Nonuniform laminated beam of Lord–Shulman type

The nonuniform thermoelastic laminated beam of the Lord–Shulman type is considered. The model is a two‐layered beam with structural damping due to the interfacial slip. The well‐posedness is proved by the semigroup theory of linear operators approach together with the Lumer–Phillips theorem. The sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2022-11, Vol.149 (4), p.1123-1154
Hauptverfasser: Feng, Baowei, Cabanillas, Victor R., Coayla‐Teran, Edson A., Raposo, Carlos A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nonuniform thermoelastic laminated beam of the Lord–Shulman type is considered. The model is a two‐layered beam with structural damping due to the interfacial slip. The well‐posedness is proved by the semigroup theory of linear operators approach together with the Lumer–Phillips theorem. The stability results presented in this paper depend on the nature of a stability function χ(x)$\chi (x)$, which we define in (12). We first prove the lack of exponential stability of the system if χ(x)≠0$\chi (x)\ne 0$, x∈(0,1)$x\in (0,1)$. And then, we establish the exponential stability for χ(x)≡0$\chi (x) \equiv 0$ and polynomial decay with rate t−12$t^{-\frac{1}{2}}$ provided χ(x)≠0$\chi (x)\ne 0$, x∈(0,1)$x\in (0,1)$. The result is new, and it is the first time that the nonuniform laminated beam is considered.
ISSN:0022-2526
1467-9590
DOI:10.1111/sapm.12530