Activation of PI3K/Akt prevents hypoxia/reoxygenation-induced GnRH decline via FOXO3a
Recent studies have suggested that the hypothalamus has an important role in aging by regulating nuclear factor-κB (NF-κB)-directed gonadotropin-releasing hormone (GnRH) decline. Moreover, our previous study has shown that ischemia-reperfusion (IR) injury activates NF-κB to reduce hypothalamic GnRH...
Gespeichert in:
Veröffentlicht in: | Physiological research 2022-08, Vol.71 (4), p.509-516 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent studies have suggested that the hypothalamus has an important role in aging by regulating nuclear factor-κB (NF-κB)-directed gonadotropin-releasing hormone (GnRH) decline. Moreover, our previous study has shown that ischemia-reperfusion (IR) injury activates NF-κB to reduce hypothalamic GnRH release, thus suggesting that IR injury may facilitate hypothalamic programming of system aging. In this study, we further examined the role of phosphoinositide 3-kinase (PI3K)/Protein kinase B (Akt) pathway, a critical intracellular signal pathway involved in the repair process after IR, in hypoxia-reoxygenation (HR)-associated GnRH decline in vitro. We used GT1-7 cells and primarily-cultured mouse GnRH neurons as cell models for investigation. Our data revealed that the activation of the PI3K/Akt/Forkhead box protein O3a (FOXO3a) pathway protects GnRH neurons from HR-induced GnRH decline by preventing HR-induced gnrh1 gene inhibition and NF-κB activation. Our results further the understanding of the regulatory mechanisms of HR-associated hypothalamic GnRH decline. |
---|---|
ISSN: | 0862-8408 1802-9973 |
DOI: | 10.33549/physiolres.934861 |