The mod k $k$ chromatic index of graphs is O(k) $O(k)
Let χk′(G) ${\chi }_{k}^{^{\prime} }(G)$ denote the minimum number of colors needed to color the edges of a graph G $G$ in a way that the subgraph spanned by the edges of each color has all degrees congruent to 1 ( modk) $1\unicode{x02007}(\,\text{mod}\,\,k)$. Scott proved that χk′(G)≤ 5 k 2log k $...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2023-01, Vol.102 (1), p.197-200 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let χk′(G) ${\chi }_{k}^{^{\prime} }(G)$ denote the minimum number of colors needed to color the edges of a graph G $G$ in a way that the subgraph spanned by the edges of each color has all degrees congruent to 1 (
modk) $1\unicode{x02007}(\,\text{mod}\,\,k)$. Scott proved that χk′(G)≤
5
k
2log k ${\chi }_{k}^{^{\prime} }(G)\le 5{k}^{2}\mathrm{log}\unicode{x0200A}\unicode{x0200A}k$, and thus settled a question of Pyber, who had asked whether χk′(G) ${\chi }_{k}^{^{\prime} }(G)$ can be bounded solely as a function of k $k$. We prove that χk′(G)=O(k) ${\chi }_{k}^{^{\prime} }(G)=O(k)$, answering affirmatively a question of Scott. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22866 |