Metamaterials and their applications: An overview
Metamaterials are man-made substances with unique spatial alternations in their constituent components. They are widely used in modifying elastic, acoustic, or electromagnetic properties of materials. Metamaterials induce low/high-frequency band gaps to control wave propagations with different wavel...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2022-11, Vol.236 (11), p.2171-2210 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metamaterials are man-made substances with unique spatial alternations in their constituent components. They are widely used in modifying elastic, acoustic, or electromagnetic properties of materials. Metamaterials induce low/high-frequency band gaps to control wave propagations with different wavelengths and are also frequently applied in microwave engineering, waveguides, dispersion compensation, smart antennas, and lenses. For instance, permittivity and permeability of the metamaterials can take positive or negative values. Due to smaller single-cell dimensions than their wavelength, the selective frequency of surface-based metamaterials is used for waveguiding. The need for adjustable bandgaps can also lead to a plethora of research into metamaterials’ tunability for structures that operate at different speeds. In this article, recent studies in the field of metamaterials and their applications are reviewed. The piezoelectric metamaterials and the electromagnetic metamaterials are introduced that is followed by a review of new types of chiral metamaterials. Additionally, absorber, nonlinear, terahertz, tunable, photonic, selective surface-based frequency in acoustic metamaterials are comparedand some remarks on tuning bandgaps methods in locally resonant metamaterials are provided. |
---|---|
ISSN: | 1464-4207 2041-3076 |
DOI: | 10.1177/1464420721995858 |