Orthogonal polynomials on a class of planar algebraic curves

We construct bivariate orthogonal polynomials (OPs) on algebraic curves of the form \(y^m = \phi(x)\) in \(\mathbb{R}^2\) where \(m = 1, 2\) and \(\phi\) is a polynomial of arbitrary degree \(d\), in terms of univariate semiclassical OPs. We compute connection coeffeicients that relate the bivariate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-11
Hauptverfasser: Fasondini, Marco, Sheehan Olver, Xu, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct bivariate orthogonal polynomials (OPs) on algebraic curves of the form \(y^m = \phi(x)\) in \(\mathbb{R}^2\) where \(m = 1, 2\) and \(\phi\) is a polynomial of arbitrary degree \(d\), in terms of univariate semiclassical OPs. We compute connection coeffeicients that relate the bivariate OPs to a polynomial basis that is itself orthogonal and whose span contains the OPs as a subspace. The connection matrix is shown to be banded and the connection coefficients and Jacobi matrices for OPs of degree \(0, \ldots, N\) are computed via the Lanczos algorithm in \(O(Nd^4)\) operations.
ISSN:2331-8422