Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdős-Rényi Random Graphs

We consider an inhomogeneous Erdős-Rényi random graph G N with vertex set [ N ] = { 1 , ⋯ , N } for which the pair of vertices i , j ∈ [ N ] , i ≠ j , is connected by an edge with probability r ( i N , j N ) , independently of other pairs of vertices. Here, r : [ 0 , 1 ] 2 → ( 0 , 1 ) is a symmetric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2022-12, Vol.35 (4), p.2413-2441
Hauptverfasser: Chakrabarty, Arijit, Hazra, Rajat Subhra, Hollander, Frank den, Sfragara, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2441
container_issue 4
container_start_page 2413
container_title Journal of theoretical probability
container_volume 35
creator Chakrabarty, Arijit
Hazra, Rajat Subhra
Hollander, Frank den
Sfragara, Matteo
description We consider an inhomogeneous Erdős-Rényi random graph G N with vertex set [ N ] = { 1 , ⋯ , N } for which the pair of vertices i , j ∈ [ N ] , i ≠ j , is connected by an edge with probability r ( i N , j N ) , independently of other pairs of vertices. Here, r : [ 0 , 1 ] 2 → ( 0 , 1 ) is a symmetric function that plays the role of a reference graphon. Let λ N be the maximal eigenvalue of the adjacency matrix of G N . It is known that λ N / N satisfies a large deviation principle as N → ∞ . The associated rate function ψ r is given by a variational formula that involves the rate function I r of a large deviation principle on graphon space. We analyse this variational formula in order to identify the properties of ψ r , specially when the reference graphon is of rank 1.
doi_str_mv 10.1007/s10959-021-01138-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736325986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736325986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-298543493acb9fbce9fab9f38854b5b445e761592240407ee899d785a04943dc3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaWWBvGjzTxEpVSKhWBKlhbTuK0qdI42ElLj8ExOAfiXhiCxI7VjEb_Q_MhdE7hkgLEV56CjCQBRglQyhOyO0ADGsWMSMbhEA0gkYLIRMAxOvF-DQBSAgyQnmu3NPjGbEvdlrbGj66ss7KpDC6sw-3K4Hv9Wm50hSfl0tRbXXUG2wLP6pXd2HAxtvN44vLPN08WH-_1vsQLXed2g6dONyt_io4KXXlz9juH6Pl28jS-I_OH6Wx8PScZH_GWMJlEggvJdZbKIs2MLHRYeBLOaZQKEZl4RCPJmAABsTGJlHmcRBqEFDzP-BBd9LmNsy-d8a1a287VoVKxOFSwSCajoGK9KnPWe2cK1bjwndsrCuobpepRqoBS_aBUu2DivckHcb007i_6H9cXHYJ4QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736325986</pqid></control><display><type>article</type><title>Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdős-Rényi Random Graphs</title><source>SpringerLink</source><creator>Chakrabarty, Arijit ; Hazra, Rajat Subhra ; Hollander, Frank den ; Sfragara, Matteo</creator><creatorcontrib>Chakrabarty, Arijit ; Hazra, Rajat Subhra ; Hollander, Frank den ; Sfragara, Matteo</creatorcontrib><description>We consider an inhomogeneous Erdős-Rényi random graph G N with vertex set [ N ] = { 1 , ⋯ , N } for which the pair of vertices i , j ∈ [ N ] , i ≠ j , is connected by an edge with probability r ( i N , j N ) , independently of other pairs of vertices. Here, r : [ 0 , 1 ] 2 → ( 0 , 1 ) is a symmetric function that plays the role of a reference graphon. Let λ N be the maximal eigenvalue of the adjacency matrix of G N . It is known that λ N / N satisfies a large deviation principle as N → ∞ . The associated rate function ψ r is given by a variational formula that involves the rate function I r of a large deviation principle on graphon space. We analyse this variational formula in order to identify the properties of ψ r , specially when the reference graphon is of rank 1.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-021-01138-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Deviation ; Eigenvalues ; Graph theory ; Mathematics ; Mathematics and Statistics ; Principles ; Probability Theory and Stochastic Processes ; Statistics ; Vertex sets</subject><ispartof>Journal of theoretical probability, 2022-12, Vol.35 (4), p.2413-2441</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-298543493acb9fbce9fab9f38854b5b445e761592240407ee899d785a04943dc3</citedby><cites>FETCH-LOGICAL-c363t-298543493acb9fbce9fab9f38854b5b445e761592240407ee899d785a04943dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10959-021-01138-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10959-021-01138-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chakrabarty, Arijit</creatorcontrib><creatorcontrib>Hazra, Rajat Subhra</creatorcontrib><creatorcontrib>Hollander, Frank den</creatorcontrib><creatorcontrib>Sfragara, Matteo</creatorcontrib><title>Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdős-Rényi Random Graphs</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>We consider an inhomogeneous Erdős-Rényi random graph G N with vertex set [ N ] = { 1 , ⋯ , N } for which the pair of vertices i , j ∈ [ N ] , i ≠ j , is connected by an edge with probability r ( i N , j N ) , independently of other pairs of vertices. Here, r : [ 0 , 1 ] 2 → ( 0 , 1 ) is a symmetric function that plays the role of a reference graphon. Let λ N be the maximal eigenvalue of the adjacency matrix of G N . It is known that λ N / N satisfies a large deviation principle as N → ∞ . The associated rate function ψ r is given by a variational formula that involves the rate function I r of a large deviation principle on graphon space. We analyse this variational formula in order to identify the properties of ψ r , specially when the reference graphon is of rank 1.</description><subject>Apexes</subject><subject>Deviation</subject><subject>Eigenvalues</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Principles</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><subject>Vertex sets</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAVaWWBvGjzTxEpVSKhWBKlhbTuK0qdI42ElLj8ExOAfiXhiCxI7VjEb_Q_MhdE7hkgLEV56CjCQBRglQyhOyO0ADGsWMSMbhEA0gkYLIRMAxOvF-DQBSAgyQnmu3NPjGbEvdlrbGj66ss7KpDC6sw-3K4Hv9Wm50hSfl0tRbXXUG2wLP6pXd2HAxtvN44vLPN08WH-_1vsQLXed2g6dONyt_io4KXXlz9juH6Pl28jS-I_OH6Wx8PScZH_GWMJlEggvJdZbKIs2MLHRYeBLOaZQKEZl4RCPJmAABsTGJlHmcRBqEFDzP-BBd9LmNsy-d8a1a287VoVKxOFSwSCajoGK9KnPWe2cK1bjwndsrCuobpepRqoBS_aBUu2DivckHcb007i_6H9cXHYJ4QQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Chakrabarty, Arijit</creator><creator>Hazra, Rajat Subhra</creator><creator>Hollander, Frank den</creator><creator>Sfragara, Matteo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdős-Rényi Random Graphs</title><author>Chakrabarty, Arijit ; Hazra, Rajat Subhra ; Hollander, Frank den ; Sfragara, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-298543493acb9fbce9fab9f38854b5b445e761592240407ee899d785a04943dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Deviation</topic><topic>Eigenvalues</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Principles</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarty, Arijit</creatorcontrib><creatorcontrib>Hazra, Rajat Subhra</creatorcontrib><creatorcontrib>Hollander, Frank den</creatorcontrib><creatorcontrib>Sfragara, Matteo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarty, Arijit</au><au>Hazra, Rajat Subhra</au><au>Hollander, Frank den</au><au>Sfragara, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdős-Rényi Random Graphs</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>35</volume><issue>4</issue><spage>2413</spage><epage>2441</epage><pages>2413-2441</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>We consider an inhomogeneous Erdős-Rényi random graph G N with vertex set [ N ] = { 1 , ⋯ , N } for which the pair of vertices i , j ∈ [ N ] , i ≠ j , is connected by an edge with probability r ( i N , j N ) , independently of other pairs of vertices. Here, r : [ 0 , 1 ] 2 → ( 0 , 1 ) is a symmetric function that plays the role of a reference graphon. Let λ N be the maximal eigenvalue of the adjacency matrix of G N . It is known that λ N / N satisfies a large deviation principle as N → ∞ . The associated rate function ψ r is given by a variational formula that involves the rate function I r of a large deviation principle on graphon space. We analyse this variational formula in order to identify the properties of ψ r , specially when the reference graphon is of rank 1.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-021-01138-w</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-9840
ispartof Journal of theoretical probability, 2022-12, Vol.35 (4), p.2413-2441
issn 0894-9840
1572-9230
language eng
recordid cdi_proquest_journals_2736325986
source SpringerLink
subjects Apexes
Deviation
Eigenvalues
Graph theory
Mathematics
Mathematics and Statistics
Principles
Probability Theory and Stochastic Processes
Statistics
Vertex sets
title Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdős-Rényi Random Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Deviation%20Principle%20for%20the%20Maximal%20Eigenvalue%20of%20Inhomogeneous%20Erd%C5%91s-R%C3%A9nyi%20Random%20Graphs&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=Chakrabarty,%20Arijit&rft.date=2022-12-01&rft.volume=35&rft.issue=4&rft.spage=2413&rft.epage=2441&rft.pages=2413-2441&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-021-01138-w&rft_dat=%3Cproquest_cross%3E2736325986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736325986&rft_id=info:pmid/&rfr_iscdi=true