Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdős-Rényi Random Graphs
We consider an inhomogeneous Erdős-Rényi random graph G N with vertex set [ N ] = { 1 , ⋯ , N } for which the pair of vertices i , j ∈ [ N ] , i ≠ j , is connected by an edge with probability r ( i N , j N ) , independently of other pairs of vertices. Here, r : [ 0 , 1 ] 2 → ( 0 , 1 ) is a symmetric...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2022-12, Vol.35 (4), p.2413-2441 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider an inhomogeneous Erdős-Rényi random graph
G
N
with vertex set
[
N
]
=
{
1
,
⋯
,
N
}
for which the pair of vertices
i
,
j
∈
[
N
]
,
i
≠
j
, is connected by an edge with probability
r
(
i
N
,
j
N
)
, independently of other pairs of vertices. Here,
r
:
[
0
,
1
]
2
→
(
0
,
1
)
is a symmetric function that plays the role of a reference graphon. Let
λ
N
be the maximal eigenvalue of the adjacency matrix of
G
N
. It is known that
λ
N
/
N
satisfies a large deviation principle as
N
→
∞
. The associated rate function
ψ
r
is given by a variational formula that involves the rate function
I
r
of a large deviation principle on graphon space. We analyse this variational formula in order to identify the properties of
ψ
r
, specially when the reference graphon is of rank 1. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-021-01138-w |