Large Deviation Principle for the Maximal Eigenvalue of Inhomogeneous Erdős-Rényi Random Graphs

We consider an inhomogeneous Erdős-Rényi random graph G N with vertex set [ N ] = { 1 , ⋯ , N } for which the pair of vertices i , j ∈ [ N ] , i ≠ j , is connected by an edge with probability r ( i N , j N ) , independently of other pairs of vertices. Here, r : [ 0 , 1 ] 2 → ( 0 , 1 ) is a symmetric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2022-12, Vol.35 (4), p.2413-2441
Hauptverfasser: Chakrabarty, Arijit, Hazra, Rajat Subhra, Hollander, Frank den, Sfragara, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an inhomogeneous Erdős-Rényi random graph G N with vertex set [ N ] = { 1 , ⋯ , N } for which the pair of vertices i , j ∈ [ N ] , i ≠ j , is connected by an edge with probability r ( i N , j N ) , independently of other pairs of vertices. Here, r : [ 0 , 1 ] 2 → ( 0 , 1 ) is a symmetric function that plays the role of a reference graphon. Let λ N be the maximal eigenvalue of the adjacency matrix of G N . It is known that λ N / N satisfies a large deviation principle as N → ∞ . The associated rate function ψ r is given by a variational formula that involves the rate function I r of a large deviation principle on graphon space. We analyse this variational formula in order to identify the properties of ψ r , specially when the reference graphon is of rank 1.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-021-01138-w