Convergence Rates in Uniform Ergodicity by Hitting Times and L2-Exponential Convergence Rates
Generally, the convergence rate in L 2 -exponential ergodicity λ is an upper bound for the convergence rate κ in uniform ergodicity for a Markov process, that is, λ ⩾ κ . In this paper, we prove that κ ⩾ inf λ , 1 / M H , where M H is a uniform bound on the moment of the hitting time to a “compact”...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2022, Vol.35 (4), p.2690-2711 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generally, the convergence rate in
L
2
-exponential ergodicity
λ
is an upper bound for the convergence rate
κ
in uniform ergodicity for a Markov process, that is,
λ
⩾
κ
. In this paper, we prove that
κ
⩾
inf
λ
,
1
/
M
H
, where
M
H
is a uniform bound on the moment of the hitting time to a “compact” set
H
. In the case where
M
H
can be made arbitrarily small for H large enough. we obtain that
λ
=
κ
. The general results are applied to Markov chains, diffusion processes and solutions to stochastic differential equations driven by symmetric stable processes. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-021-01155-9 |