Convergence Rates in Uniform Ergodicity by Hitting Times and L2-Exponential Convergence Rates

Generally, the convergence rate in L 2 -exponential ergodicity λ is an upper bound for the convergence rate κ in uniform ergodicity for a Markov process, that is, λ ⩾ κ . In this paper, we prove that κ ⩾ inf λ , 1 / M H , where M H is a uniform bound on the moment of the hitting time to a “compact”...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2022, Vol.35 (4), p.2690-2711
Hauptverfasser: Mao, Yong-Hua, Wang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generally, the convergence rate in L 2 -exponential ergodicity λ is an upper bound for the convergence rate κ in uniform ergodicity for a Markov process, that is, λ ⩾ κ . In this paper, we prove that κ ⩾ inf λ , 1 / M H , where M H is a uniform bound on the moment of the hitting time to a “compact” set H . In the case where M H can be made arbitrarily small for H large enough. we obtain that λ = κ . The general results are applied to Markov chains, diffusion processes and solutions to stochastic differential equations driven by symmetric stable processes.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-021-01155-9