Investigation of Oscillation Modes in a High-Speed Flow with Heat Supply. II. Numerical Simulation
Results of numerical simulations of turbulent reacting flows in a channel with sudden expansion with due allowance for injection of hydrogen jets into a supersonic (M = 4) air flow are reported. The simulations are performed in a three-dimensional unsteady formulation with the use of the ANSYS Fluen...
Gespeichert in:
Veröffentlicht in: | Combustion, explosion, and shock waves explosion, and shock waves, 2022-10, Vol.58 (5), p.546-554 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Results of numerical simulations of turbulent reacting flows in a channel with sudden expansion with due allowance for injection of hydrogen jets into a supersonic (M = 4) air flow are reported. The simulations are performed in a three-dimensional unsteady formulation with the use of the ANSYS Fluent software under the conditions of experiments performed in the IT-302M high-enthalpy wind tunnel. The computations predict a self-oscillatory regime with intense oscillations of pressure and integral heat release. The period-averaged pressure distribution is in reasonable agreement with the experimental measurements, and the frequency of pressure oscillations is within the range obtained in the experiments. Based on a detailed analysis of the flow characteristics within the full cycle of oscillations, the feedback mechanism responsible for the emergence of self-supported oscillations is refined. |
---|---|
ISSN: | 0010-5082 1573-8345 |
DOI: | 10.1134/S0010508222050069 |