Euclidean Distance Degree and Mixed Volume

We initiate a study of the Euclidean distance degree in the context of sparse polynomials. Specifically, we consider a hypersurface f = 0 defined by a polynomial  f that is general given its support, such that the support contains the origin. We show that the Euclidean distance degree of f = 0 equal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2022-12, Vol.22 (6), p.1743-1765
Hauptverfasser: Breiding, P., Sottile, F., Woodcock, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We initiate a study of the Euclidean distance degree in the context of sparse polynomials. Specifically, we consider a hypersurface f = 0 defined by a polynomial  f that is general given its support, such that the support contains the origin. We show that the Euclidean distance degree of f = 0 equals the mixed volume of the Newton polytopes of the associated Lagrange multiplier equations. We discuss the implication of our result for computational complexity and give a formula for the Euclidean distance degree when the Newton polytope is a rectangular parallelepiped.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-021-09534-8