CONDITION (K) FOR BOOLEAN DYNAMICAL SYSTEMS
We generalize Condition (K) from directed graphs to Boolean dynamical systems and show that a locally finite Boolean dynamical system $({{\mathcal {B}}},{{\mathcal {L}}},\theta )$ with countable ${{\mathcal {B}}}$ and ${{\mathcal {L}}}$ satisfies Condition (K) if and only if every ideal of its $C^*$...
Gespeichert in:
Veröffentlicht in: | Journal of the Australian Mathematical Society (2001) 2022-04, Vol.112 (2), p.145-169 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize Condition (K) from directed graphs to Boolean dynamical systems and show that a locally finite Boolean dynamical system
$({{\mathcal {B}}},{{\mathcal {L}}},\theta )$
with countable
${{\mathcal {B}}}$
and
${{\mathcal {L}}}$
satisfies Condition (K) if and only if every ideal of its
$C^*$
-algebra is gauge-invariant, if and only if its
$C^*$
-algebra has the (weak) ideal property, and if and only if its
$C^*$
-algebra has topological dimension zero. As a corollary we prove that if the
$C^*$
-algebra of a locally finite Boolean dynamical system with
${{\mathcal {B}}}$
and
${{\mathcal {L}}}$
countable either has real rank zero or is purely infinite, then
$({{\mathcal {B}}}, {{\mathcal {L}}}, \theta )$
satisfies Condition (K). We also generalize the notion of maximal tails from directed graph to Boolean dynamical systems and use this to give a complete description of the primitive ideal space of the
$C^*$
-algebra of a locally finite Boolean dynamical system that satisfies Condition (K) and has countable
${{\mathcal {B}}}$
and
${{\mathcal {L}}}$
. |
---|---|
ISSN: | 1446-7887 1446-8107 |
DOI: | 10.1017/S1446788721000082 |