Simultaneous optimisation of support structure regions and part topology for additive manufacturing

Support structures are required to enable the build of additively manufactured parts. The supports reinforce overhanging regions on the part and/or counteract the thermally-induced residual stresses generated during printing. However, the optimal design of the part for its intended use case is decou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2022-11, Vol.65 (11), Article 334
1. Verfasser: Daynes, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Support structures are required to enable the build of additively manufactured parts. The supports reinforce overhanging regions on the part and/or counteract the thermally-induced residual stresses generated during printing. However, the optimal design of the part for its intended use case is decoupled from the design of the support structures in a conventional design for additive manufacturing (DfAM) workflow. In this work, a novel methodology is presented that simultaneously optimises the part topology and its support structure regions. A two-model topology optimisation approach is considered. One model describes the combined part and support structure regions subject to a pseudo-gravity load and a second model describes the part subject to its intended application load cases. A novel load-aligned trunk and branch support structure is generated from the topology optimisation results. Generating the fine support features in a post-processing step avoids the computational expense of topology optimising the intricate supports directly. Thermo-mechanical simulations of a selective laser melting process confirms that this new approach to optimising support structures can reduce manufacturing process-induced deformation when benchmarked against a conventional DfAM workflow.
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-022-03454-z