Green manufacturing concept applied to the grinding process of advanced ceramics using an alternative lubri-refrigeration technique
The growing demand for current and future projects lacks materials development and their manufacturing process, mainly when they need to be used in inert applications, where no physical or chemical reaction can interact with the elements around them. In this context, ceramic materials have stood out...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2022-12, Vol.123 (7-8), p.2771-2782 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The growing demand for current and future projects lacks materials development and their manufacturing process, mainly when they need to be used in inert applications, where no physical or chemical reaction can interact with the elements around them. In this context, ceramic materials have stood out in applications that demand high resistance to temperature and wear, such as engine components and in situations where greater stability and chemical compatibility are required, such as prostheses and medical components. However, the manufacture of ceramic components is expensive and slow, given that the traditional manufacturing procedure for ceramic components is based on sintering. This process limits productivity and does not provide the final component with the high dimensional and shape quality required in more specific applications. However, there is still a lack of studies on the large-scale manufacturing processes of these products, mainly related to their grinding. Therefore, it is crucial to study the best ways of processing materials that will soon be essential to the mechanical, electronic, and biological industries. Furthermore, studies about advanced ceramics have become increasingly indispensable, based on factors such as high added values due to the difficulty of manufacturing combined with the high environmental impact caused by this process. However, advanced ceramics are materials with difficult to machine because of their high hardness and fragility properties, becoming required manufacturing processes more complex, such as grinding. Therefore, this paper explored several conditions applied to advanced ceramic, approaching the main variables used by worldwide industries, being: surface roughness (Ra), roundness error, diametral wheel wear, G-ratio, grinding power, and analysis costs process. The grinding process used in the research was of kind plunge combined with a diamond wheel applied to four different feed rates: 0.25, 0.50, 0.75, and 1.00 mm/min, in which two systems by application of cutting fluid in the process were also used: flood and MQL lubri-refrigeration techniques, with a flow rate of 15 l/min and 100 ml/h, respectively. The results indicated that the final conditions were affected by the increase in feed rate for both situations. Nonetheless, they were superior to those when the flood technique was used. However, the cost analysis process indicated that the drastic reduction of the amount of cutting fluid applied by the MQL |
---|---|
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-022-10385-y |