Unsupervised machine learning approaches to the q-state Potts model

In this paper, we study phase transitions of the q -state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k -means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2022-11, Vol.95 (11), Article 189
Hauptverfasser: Tirelli, Andrea, Carvalho, Danyella O., Oliveira, Lucas A., de Lima, José P., Costa, Natanael C., dos Santos, Raimundo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title The European physical journal. B, Condensed matter physics
container_volume 95
creator Tirelli, Andrea
Carvalho, Danyella O.
Oliveira, Lucas A.
de Lima, José P.
Costa, Natanael C.
dos Santos, Raimundo R.
description In this paper, we study phase transitions of the q -state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k -means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures T c ( q ) , for q = 3 , 4 and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions. Graphical abstract
doi_str_mv 10.1140/epjb/s10051-022-00453-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2735641937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735641937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ed37e488648f7dd5adc80546bdf69005a5cf52a5892b3431e368f0e03f93df443</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwYDn2GQnyWaPUvwHgh7sOaSbSbul3d0mqeC3d-uKHj3NMLz35vEj5FrwWyEkn2G_Wc6S4FwJxouCcS4VMDghEyFBMs1Bn_7uhTknFyltOOdCCzkh80WbDj3GjyahpztXr5sW6RZdbJt2RV3fx244YqK5o3mNdM9SdhnpW5dzorvO4_aSnAW3TXj1M6dk8XD_Pn9iL6-Pz_O7F1YDyMzQQ4nSGC1NKL1XzteGK6mXPuhqqO9UHVThlKmKJUgQCNoEjhxCBT5ICVNyM-YOnfYHTNluukNsh5e2KEFpKSooB1U5qurYpRQx2D42Oxc_reD2SMweidmRmB2I2W9iFganGZ1pcLQrjH_5_1m_ALSmccE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735641937</pqid></control><display><type>article</type><title>Unsupervised machine learning approaches to the q-state Potts model</title><source>SpringerLink Journals</source><creator>Tirelli, Andrea ; Carvalho, Danyella O. ; Oliveira, Lucas A. ; de Lima, José P. ; Costa, Natanael C. ; dos Santos, Raimundo R.</creator><creatorcontrib>Tirelli, Andrea ; Carvalho, Danyella O. ; Oliveira, Lucas A. ; de Lima, José P. ; Costa, Natanael C. ; dos Santos, Raimundo R.</creatorcontrib><description>In this paper, we study phase transitions of the q -state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k -means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures T c ( q ) , for q = 3 , 4 and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions. Graphical abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/s10051-022-00453-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Complex Systems ; Condensed Matter Physics ; Data analysis ; Fluid- and Aerodynamics ; Machine learning ; Phase transitions ; Physics ; Physics and Astronomy ; Principal components analysis ; Regular Article - Statistical and Nonlinear Physics ; Size effects ; Solid State Physics ; Unsupervised learning ; Vector quantization</subject><ispartof>The European physical journal. B, Condensed matter physics, 2022-11, Vol.95 (11), Article 189</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ed37e488648f7dd5adc80546bdf69005a5cf52a5892b3431e368f0e03f93df443</citedby><cites>FETCH-LOGICAL-c334t-ed37e488648f7dd5adc80546bdf69005a5cf52a5892b3431e368f0e03f93df443</cites><orcidid>0000-0002-7411-4321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/s10051-022-00453-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/s10051-022-00453-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tirelli, Andrea</creatorcontrib><creatorcontrib>Carvalho, Danyella O.</creatorcontrib><creatorcontrib>Oliveira, Lucas A.</creatorcontrib><creatorcontrib>de Lima, José P.</creatorcontrib><creatorcontrib>Costa, Natanael C.</creatorcontrib><creatorcontrib>dos Santos, Raimundo R.</creatorcontrib><title>Unsupervised machine learning approaches to the q-state Potts model</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>In this paper, we study phase transitions of the q -state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k -means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures T c ( q ) , for q = 3 , 4 and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions. Graphical abstract</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Data analysis</subject><subject>Fluid- and Aerodynamics</subject><subject>Machine learning</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Principal components analysis</subject><subject>Regular Article - Statistical and Nonlinear Physics</subject><subject>Size effects</subject><subject>Solid State Physics</subject><subject>Unsupervised learning</subject><subject>Vector quantization</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwYDn2GQnyWaPUvwHgh7sOaSbSbul3d0mqeC3d-uKHj3NMLz35vEj5FrwWyEkn2G_Wc6S4FwJxouCcS4VMDghEyFBMs1Bn_7uhTknFyltOOdCCzkh80WbDj3GjyahpztXr5sW6RZdbJt2RV3fx244YqK5o3mNdM9SdhnpW5dzorvO4_aSnAW3TXj1M6dk8XD_Pn9iL6-Pz_O7F1YDyMzQQ4nSGC1NKL1XzteGK6mXPuhqqO9UHVThlKmKJUgQCNoEjhxCBT5ICVNyM-YOnfYHTNluukNsh5e2KEFpKSooB1U5qurYpRQx2D42Oxc_reD2SMweidmRmB2I2W9iFganGZ1pcLQrjH_5_1m_ALSmccE</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Tirelli, Andrea</creator><creator>Carvalho, Danyella O.</creator><creator>Oliveira, Lucas A.</creator><creator>de Lima, José P.</creator><creator>Costa, Natanael C.</creator><creator>dos Santos, Raimundo R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7411-4321</orcidid></search><sort><creationdate>20221101</creationdate><title>Unsupervised machine learning approaches to the q-state Potts model</title><author>Tirelli, Andrea ; Carvalho, Danyella O. ; Oliveira, Lucas A. ; de Lima, José P. ; Costa, Natanael C. ; dos Santos, Raimundo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ed37e488648f7dd5adc80546bdf69005a5cf52a5892b3431e368f0e03f93df443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Data analysis</topic><topic>Fluid- and Aerodynamics</topic><topic>Machine learning</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Principal components analysis</topic><topic>Regular Article - Statistical and Nonlinear Physics</topic><topic>Size effects</topic><topic>Solid State Physics</topic><topic>Unsupervised learning</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tirelli, Andrea</creatorcontrib><creatorcontrib>Carvalho, Danyella O.</creatorcontrib><creatorcontrib>Oliveira, Lucas A.</creatorcontrib><creatorcontrib>de Lima, José P.</creatorcontrib><creatorcontrib>Costa, Natanael C.</creatorcontrib><creatorcontrib>dos Santos, Raimundo R.</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tirelli, Andrea</au><au>Carvalho, Danyella O.</au><au>Oliveira, Lucas A.</au><au>de Lima, José P.</au><au>Costa, Natanael C.</au><au>dos Santos, Raimundo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised machine learning approaches to the q-state Potts model</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>95</volume><issue>11</issue><artnum>189</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>In this paper, we study phase transitions of the q -state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k -means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures T c ( q ) , for q = 3 , 4 and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/s10051-022-00453-3</doi><orcidid>https://orcid.org/0000-0002-7411-4321</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2022-11, Vol.95 (11), Article 189
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_2735641937
source SpringerLink Journals
subjects Algorithms
Cluster analysis
Clustering
Complex Systems
Condensed Matter Physics
Data analysis
Fluid- and Aerodynamics
Machine learning
Phase transitions
Physics
Physics and Astronomy
Principal components analysis
Regular Article - Statistical and Nonlinear Physics
Size effects
Solid State Physics
Unsupervised learning
Vector quantization
title Unsupervised machine learning approaches to the q-state Potts model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20machine%20learning%20approaches%20to%20the%20q-state%20Potts%20model&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Tirelli,%20Andrea&rft.date=2022-11-01&rft.volume=95&rft.issue=11&rft.artnum=189&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/s10051-022-00453-3&rft_dat=%3Cproquest_cross%3E2735641937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735641937&rft_id=info:pmid/&rfr_iscdi=true