Unsupervised machine learning approaches to the q-state Potts model
In this paper, we study phase transitions of the q -state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k -means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though i...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2022-11, Vol.95 (11), Article 189 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 95 |
creator | Tirelli, Andrea Carvalho, Danyella O. Oliveira, Lucas A. de Lima, José P. Costa, Natanael C. dos Santos, Raimundo R. |
description | In this paper, we study phase transitions of the
q
-state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA),
k
-means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures
T
c
(
q
)
, for
q
=
3
,
4
and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions.
Graphical abstract |
doi_str_mv | 10.1140/epjb/s10051-022-00453-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2735641937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735641937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ed37e488648f7dd5adc80546bdf69005a5cf52a5892b3431e368f0e03f93df443</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKufwYDn2GQnyWaPUvwHgh7sOaSbSbul3d0mqeC3d-uKHj3NMLz35vEj5FrwWyEkn2G_Wc6S4FwJxouCcS4VMDghEyFBMs1Bn_7uhTknFyltOOdCCzkh80WbDj3GjyahpztXr5sW6RZdbJt2RV3fx244YqK5o3mNdM9SdhnpW5dzorvO4_aSnAW3TXj1M6dk8XD_Pn9iL6-Pz_O7F1YDyMzQQ4nSGC1NKL1XzteGK6mXPuhqqO9UHVThlKmKJUgQCNoEjhxCBT5ICVNyM-YOnfYHTNluukNsh5e2KEFpKSooB1U5qurYpRQx2D42Oxc_reD2SMweidmRmB2I2W9iFganGZ1pcLQrjH_5_1m_ALSmccE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735641937</pqid></control><display><type>article</type><title>Unsupervised machine learning approaches to the q-state Potts model</title><source>SpringerLink Journals</source><creator>Tirelli, Andrea ; Carvalho, Danyella O. ; Oliveira, Lucas A. ; de Lima, José P. ; Costa, Natanael C. ; dos Santos, Raimundo R.</creator><creatorcontrib>Tirelli, Andrea ; Carvalho, Danyella O. ; Oliveira, Lucas A. ; de Lima, José P. ; Costa, Natanael C. ; dos Santos, Raimundo R.</creatorcontrib><description>In this paper, we study phase transitions of the
q
-state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA),
k
-means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures
T
c
(
q
)
, for
q
=
3
,
4
and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions.
Graphical abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/s10051-022-00453-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Complex Systems ; Condensed Matter Physics ; Data analysis ; Fluid- and Aerodynamics ; Machine learning ; Phase transitions ; Physics ; Physics and Astronomy ; Principal components analysis ; Regular Article - Statistical and Nonlinear Physics ; Size effects ; Solid State Physics ; Unsupervised learning ; Vector quantization</subject><ispartof>The European physical journal. B, Condensed matter physics, 2022-11, Vol.95 (11), Article 189</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ed37e488648f7dd5adc80546bdf69005a5cf52a5892b3431e368f0e03f93df443</citedby><cites>FETCH-LOGICAL-c334t-ed37e488648f7dd5adc80546bdf69005a5cf52a5892b3431e368f0e03f93df443</cites><orcidid>0000-0002-7411-4321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/s10051-022-00453-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/s10051-022-00453-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tirelli, Andrea</creatorcontrib><creatorcontrib>Carvalho, Danyella O.</creatorcontrib><creatorcontrib>Oliveira, Lucas A.</creatorcontrib><creatorcontrib>de Lima, José P.</creatorcontrib><creatorcontrib>Costa, Natanael C.</creatorcontrib><creatorcontrib>dos Santos, Raimundo R.</creatorcontrib><title>Unsupervised machine learning approaches to the q-state Potts model</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>In this paper, we study phase transitions of the
q
-state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA),
k
-means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures
T
c
(
q
)
, for
q
=
3
,
4
and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions.
Graphical abstract</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Data analysis</subject><subject>Fluid- and Aerodynamics</subject><subject>Machine learning</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Principal components analysis</subject><subject>Regular Article - Statistical and Nonlinear Physics</subject><subject>Size effects</subject><subject>Solid State Physics</subject><subject>Unsupervised learning</subject><subject>Vector quantization</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKufwYDn2GQnyWaPUvwHgh7sOaSbSbul3d0mqeC3d-uKHj3NMLz35vEj5FrwWyEkn2G_Wc6S4FwJxouCcS4VMDghEyFBMs1Bn_7uhTknFyltOOdCCzkh80WbDj3GjyahpztXr5sW6RZdbJt2RV3fx244YqK5o3mNdM9SdhnpW5dzorvO4_aSnAW3TXj1M6dk8XD_Pn9iL6-Pz_O7F1YDyMzQQ4nSGC1NKL1XzteGK6mXPuhqqO9UHVThlKmKJUgQCNoEjhxCBT5ICVNyM-YOnfYHTNluukNsh5e2KEFpKSooB1U5qurYpRQx2D42Oxc_reD2SMweidmRmB2I2W9iFganGZ1pcLQrjH_5_1m_ALSmccE</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Tirelli, Andrea</creator><creator>Carvalho, Danyella O.</creator><creator>Oliveira, Lucas A.</creator><creator>de Lima, José P.</creator><creator>Costa, Natanael C.</creator><creator>dos Santos, Raimundo R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7411-4321</orcidid></search><sort><creationdate>20221101</creationdate><title>Unsupervised machine learning approaches to the q-state Potts model</title><author>Tirelli, Andrea ; Carvalho, Danyella O. ; Oliveira, Lucas A. ; de Lima, José P. ; Costa, Natanael C. ; dos Santos, Raimundo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ed37e488648f7dd5adc80546bdf69005a5cf52a5892b3431e368f0e03f93df443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Data analysis</topic><topic>Fluid- and Aerodynamics</topic><topic>Machine learning</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Principal components analysis</topic><topic>Regular Article - Statistical and Nonlinear Physics</topic><topic>Size effects</topic><topic>Solid State Physics</topic><topic>Unsupervised learning</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tirelli, Andrea</creatorcontrib><creatorcontrib>Carvalho, Danyella O.</creatorcontrib><creatorcontrib>Oliveira, Lucas A.</creatorcontrib><creatorcontrib>de Lima, José P.</creatorcontrib><creatorcontrib>Costa, Natanael C.</creatorcontrib><creatorcontrib>dos Santos, Raimundo R.</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tirelli, Andrea</au><au>Carvalho, Danyella O.</au><au>Oliveira, Lucas A.</au><au>de Lima, José P.</au><au>Costa, Natanael C.</au><au>dos Santos, Raimundo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised machine learning approaches to the q-state Potts model</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>95</volume><issue>11</issue><artnum>189</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>In this paper, we study phase transitions of the
q
-state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA),
k
-means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures
T
c
(
q
)
, for
q
=
3
,
4
and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/s10051-022-00453-3</doi><orcidid>https://orcid.org/0000-0002-7411-4321</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2022-11, Vol.95 (11), Article 189 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_2735641937 |
source | SpringerLink Journals |
subjects | Algorithms Cluster analysis Clustering Complex Systems Condensed Matter Physics Data analysis Fluid- and Aerodynamics Machine learning Phase transitions Physics Physics and Astronomy Principal components analysis Regular Article - Statistical and Nonlinear Physics Size effects Solid State Physics Unsupervised learning Vector quantization |
title | Unsupervised machine learning approaches to the q-state Potts model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20machine%20learning%20approaches%20to%20the%20q-state%20Potts%20model&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Tirelli,%20Andrea&rft.date=2022-11-01&rft.volume=95&rft.issue=11&rft.artnum=189&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/s10051-022-00453-3&rft_dat=%3Cproquest_cross%3E2735641937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735641937&rft_id=info:pmid/&rfr_iscdi=true |