Unsupervised machine learning approaches to the q-state Potts model
In this paper, we study phase transitions of the q -state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k -means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though i...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2022-11, Vol.95 (11), Article 189 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study phase transitions of the
q
-state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA),
k
-means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures
T
c
(
q
)
, for
q
=
3
,
4
and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions.
Graphical abstract |
---|---|
ISSN: | 1434-6028 1434-6036 |
DOI: | 10.1140/epjb/s10051-022-00453-3 |