Unsupervised machine learning approaches to the q-state Potts model

In this paper, we study phase transitions of the q -state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k -means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2022-11, Vol.95 (11), Article 189
Hauptverfasser: Tirelli, Andrea, Carvalho, Danyella O., Oliveira, Lucas A., de Lima, José P., Costa, Natanael C., dos Santos, Raimundo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study phase transitions of the q -state Potts model through a number of unsupervised machine learning techniques, namely Principal Component Analysis (PCA), k -means clustering, Uniform Manifold Approximation and Projection (UMAP), and Topological Data Analysis (TDA). Even though in all cases we are able to retrieve the correct critical temperatures T c ( q ) , for q = 3 , 4 and 5, results show that non-linear methods as UMAP and TDA are less dependent on finite-size effects. This study may be considered as a benchmark for the use of different unsupervised machine learning algorithms in the investigation of phase transitions. Graphical abstract
ISSN:1434-6028
1434-6036
DOI:10.1140/epjb/s10051-022-00453-3