Linking microwave heating of aqueous spheres to morphology-dependent resonances

It was recently suggested that the sparking of grape dimers in microwave ovens is due to the interaction of morphology-dependent resonances in aqueous spheres. However, evidence for microwave resonances in individual grape-sized aqueous spheres has remained weak and is open to interpretation. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2022-11, Vol.12 (11), p.115216-115216-6
Hauptverfasser: Song, Yuchen, Shafe-Purcell, John, Slepkov, Aaron D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It was recently suggested that the sparking of grape dimers in microwave ovens is due to the interaction of morphology-dependent resonances in aqueous spheres. However, evidence for microwave resonances in individual grape-sized aqueous spheres has remained weak and is open to interpretation. In this work, we provide new experimental evidence for size-dependent resonances in hydrogel spheres via calorimetric measurement of the electromagnetic energy absorbed by hydrogel spheres under microwave irradiation. Using finite-element simulations, we predict the resonant behavior of grape-sized aqueous spheres and further explore the differences between mode intensities in free-space and various in situ positions of a microwave oven. The lowest morphology-dependent resonance—a magnetic dipolar mode—is experimentally confirmed, appearing at the predicted diameter of ∼1.35 cm. Finally, experimental evidence for higher order modes in larger spheres is suggestive but remains unresolved.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0122773