Regularized Rényi divergence minimization through Bregman proximal gradient algorithms

We study the variational inference problem of minimizing a regularized Rényi divergence over an exponential family, and propose a relaxed moment-matching algorithm, which includes a proximal-like step. Using the information-geometric link between Bregman divergences and the Kullback-Leibler divergen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Guilmeau, Thomas, Chouzenoux, Emilie, Elvira, Víctor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the variational inference problem of minimizing a regularized Rényi divergence over an exponential family, and propose a relaxed moment-matching algorithm, which includes a proximal-like step. Using the information-geometric link between Bregman divergences and the Kullback-Leibler divergence, this algorithm is shown to be equivalent to a Bregman proximal gradient algorithm. This novel perspective allows us to exploit the geometry of our approximate model while using stochastic black-box updates. We use this point of view to prove strong convergence guarantees including monotonic decrease of the objective, convergence to a stationary point or to the minimizer, and geometric convergence rates. These new theoretical insights lead to a versatile, robust, and competitive method, as illustrated by numerical experiments.
ISSN:2331-8422