On the convolutions of sums of multiple zeta(-star) values of height one
In this paper, we investigate the sums of multiple zeta(-star) values of height one: Z ± ( n ) = ∑ a + b = n ( ± 1 ) b ζ ( { 1 } a , b + 2 ) , Z ± ⋆ ( n ) = ∑ a + b = n ( ± 1 ) b ζ ⋆ ( { 1 } a , b + 2 ) . In particular, we prove that the weighted sum ∑ 0 ≤ m ≤ p m : even ∑ ∣ α ∣ = p + 3 2 α m + 1 +...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2022-12, Vol.59 (4), p.1197-1223 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the sums of multiple zeta(-star) values of height one:
Z
±
(
n
)
=
∑
a
+
b
=
n
(
±
1
)
b
ζ
(
{
1
}
a
,
b
+
2
)
,
Z
±
⋆
(
n
)
=
∑
a
+
b
=
n
(
±
1
)
b
ζ
⋆
(
{
1
}
a
,
b
+
2
)
. In particular, we prove that the weighted sum
∑
0
≤
m
≤
p
m
:
even
∑
∣
α
∣
=
p
+
3
2
α
m
+
1
+
1
ζ
(
α
0
,
α
1
,
…
,
α
m
,
α
m
+
1
+
1
)
can be evaluated through the convolution of
Z
-
(
m
)
and
Z
+
(
n
)
with
m
+
n
=
p
. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-022-00628-7 |