Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review
Nanoparticles typically have dimensions of less than 100 nm. Scientists around the world have recently become interested in nanotechnology because of its potential applications in a wide range of fields, including catalysis, gas sensing, renewable energy, electronics, medicine, diagnostics, medicati...
Gespeichert in:
Veröffentlicht in: | Catalysts 2022-11, Vol.12 (11), p.1386 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanoparticles typically have dimensions of less than 100 nm. Scientists around the world have recently become interested in nanotechnology because of its potential applications in a wide range of fields, including catalysis, gas sensing, renewable energy, electronics, medicine, diagnostics, medication delivery, cosmetics, the construction industry, and the food industry. The sizes and forms of nanoparticles (NPs) are the primary determinants of their properties. Nanoparticles’ unique characteristics may be explored for use in electronics (transistors, LEDs, reusable catalysts), energy (oil recovery), medicine (imaging, tumor detection, drug administration), and more. For the aforementioned applications, the synthesis of nanoparticles with an appropriate size, structure, monodispersity, and morphology is essential. New procedures have been developed in nanotechnology that are safe for the environment and can be used to reliably create nanoparticles and nanomaterials. This research aims to illustrate top-down and bottom-up strategies for nanomaterial production, and numerous characterization methodologies, nanoparticle features, and sector-specific applications of nanotechnology. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal12111386 |