Weyl-Einstein structures on conformal solvmanifolds

A conformal Lie group is a conformal manifold ( M ,  c ) such that M has a Lie group structure and c is the conformal structure defined by a left-invariant metric g on M . We study Weyl-Einstein structures on conformal solvable Lie groups and on their compact quotients. In the compact case, we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2023-02, Vol.217 (1), Article 9
Hauptverfasser: del Barco, Viviana, Moroianu, Andrei, Schichl, Arthur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A conformal Lie group is a conformal manifold ( M ,  c ) such that M has a Lie group structure and c is the conformal structure defined by a left-invariant metric g on M . We study Weyl-Einstein structures on conformal solvable Lie groups and on their compact quotients. In the compact case, we show that every conformal solvmanifold carrying a Weyl-Einstein structure is Einstein. We also show that there are no left-invariant Weyl-Einstein structures on non-abelian nilpotent conformal Lie groups, and classify them on conformal solvable Lie groups in the almost abelian case. Furthermore, we determine the precise list (up to automorphisms) of left-invariant metrics on simply connected solvable Lie groups of dimension 3 carrying left-invariant Weyl-Einstein structures.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-022-00743-1