Two-Dimensional Interpolation of Functions by Cubic Splines in the Presence of Boundary Layers

We study interpolation of a function of two variables with large gradients in regions of a boundary layer under the assumption that the Shishkin decomposition into the sum of regular and boundary layer components is valid for the interpolated function. We generalize the one-dimensional cubic splines...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-11, Vol.267 (4), p.511-518
1. Verfasser: Zadorin, A. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study interpolation of a function of two variables with large gradients in regions of a boundary layer under the assumption that the Shishkin decomposition into the sum of regular and boundary layer components is valid for the interpolated function. We generalize the one-dimensional cubic splines, studied earlier on the Shishkin and Bakhvalov grids, to the two-dimensional case. We obtain error estimates for a two-dimensional spline interpolation, uniform in a small parameter.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-022-06156-5