Two-Dimensional Interpolation of Functions by Cubic Splines in the Presence of Boundary Layers
We study interpolation of a function of two variables with large gradients in regions of a boundary layer under the assumption that the Shishkin decomposition into the sum of regular and boundary layer components is valid for the interpolated function. We generalize the one-dimensional cubic splines...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-11, Vol.267 (4), p.511-518 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study interpolation of a function of two variables with large gradients in regions of a boundary layer under the assumption that the Shishkin decomposition into the sum of regular and boundary layer components is valid for the interpolated function. We generalize the one-dimensional cubic splines, studied earlier on the Shishkin and Bakhvalov grids, to the two-dimensional case. We obtain error estimates for a two-dimensional spline interpolation, uniform in a small parameter. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-022-06156-5 |