Fourth‐order Schrödinger type operator with unbounded coefficients in L2(ℝN)
In this paper, we study generation results in L2(ℝN)$$ {L}^2\left({\mathbb{R}}^N\right) $$ for the fourth‐order Schrödinger type operator with unbounded coefficients of the form A=a2Δ2+V2$$ A={a}^2{\Delta}^2&#x00...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2022-11, Vol.45 (17), p.11246-11261 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study generation results in
L2(ℝN)$$ {L}^2\left({\mathbb{R}}^N\right) $$ for the fourth‐order Schrödinger type operator with unbounded coefficients of the form
A=a2Δ2+V2$$ A={a}^2{\Delta}^2+{V}^2 $$
where
a(x)=1+|x|α$$ a(x)=1+{\left|x\right|}^{\alpha } $$ and
V=|x|β$$ V={\left|x\right|}^{\beta } $$ with
α>0$$ \alpha >0 $$ and
β>(α−2)+$$ \beta >{\left(\alpha -2\right)}^{+} $$. We obtain that
(−A,D(A))$$ \left(-A,D(A)\right) $$ generates an analytic strongly continuous semigroup in
L2(ℝN)$$ {L}^2\left({\mathbb{R}}^N\right) $$ for
N≥5$$ N\ge 5 $$. Moreover, the maximal domain
D(A)$$ D(A) $$ can be characterized for
N>8$$ N>8 $$ by the weighted Sobolev space
D2(A)={u∈H4(ℝN):V2u,|x|2α−hD4−hu∈L2(ℝN)forh=0,1,2,3,4}.$$ {D}_2(A)=\left\{u\in {H}^4\left({\mathbb{R}}^N\right):{V}^2u,{\left|x\right|}^{2\alpha -h}{D}^{4-h}u\in {L}^2\left({\mathbb{R}}^N\right)\kern0.1em \mathrm{for}\kern0.4em h=0,1,2,3,4\right\}. $$ |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.8447 |