Modulo-Counting First-Order Logic on Bounded Expansion Classes

We prove that, on bounded expansion classes, every first-order formula with modulo counting is equivalent, in a linear-time computable monadic expansion, to an existential first-order formula. As a consequence, we derive, on bounded expansion classes, that first-order transductions with modulo count...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Nesetril, J, P Ossona de Mendez, Siebertz, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that, on bounded expansion classes, every first-order formula with modulo counting is equivalent, in a linear-time computable monadic expansion, to an existential first-order formula. As a consequence, we derive, on bounded expansion classes, that first-order transductions with modulo counting have the same encoding power as existential first-order transductions. Also, modulo-counting first-order model checking and computation of the size of sets definable in modulo-counting first-order logic can be achieved in linear time on bounded expansion classes. As an application, we prove that a class has structurally bounded expansion if and only if it is a class of bounded depth vertex-minors of graphs in a bounded expansion class. We also show how our results can be used to implement fast matrix calculus on bounded expansion matrices over a finite field.
ISSN:2331-8422