Meso-Scale Tearing Mechanism Analysis of Flexible Fabric Composite for Stratospheric Airship via Experiment and Numerical Simulation

Stratospheric airships are controllable lighter-than-air aircraft and have great potential application in surveillance and communication. The envelopes, one of the main structures of a stratospheric airship, are generally made of flexible fabric composites to be lightweight, high strength, capable o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shanghai jiao tong da xue xue bao 2022-12, Vol.27 (6), p.873-884
Hauptverfasser: Chen, Yonglin, Yang, Weidong, Xie, Weicheng, Wang, Xiaoliang, Fu, Gongyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stratospheric airships are controllable lighter-than-air aircraft and have great potential application in surveillance and communication. The envelopes, one of the main structures of a stratospheric airship, are generally made of flexible fabric composites to be lightweight, high strength, capable of containing lifting gas, and resistant to the harsh stratospheric environment. The composites, however, are prone to tearing. Hence, their tearing behavior has attracted great attention. This paper explores the meso-scale tearing mechanism of an envelope and the temperature influence on its tear strength via experiment and numerical simulation. Biaxial tear tests were conducted on cruciform specimens, which were contacted with liquids (cold alcohol or hot water) at different temperatures including −25, 20, 50, 80 °C. The specimens’ tear stresses were measured and the meso-scale tearing behavior was captured with a microscope. Besides, a novel finite element analysis model based on truss and spring elements was established to simulate the tearing behavior. It was found that the simulation result has a relative agreement with the tests. The simulation results show that the maximum tear stress of the envelope drops by 39.62% as the temperature rises from −60°Cto 80°C and the tensile properties of yarns and matrix account for stress concentration around a crack tip. This work deeply reveals the meso-scale tearing mechanism of the envelope and provides a valuable reference for exploring tearing properties of flexible fabric composites.
ISSN:1007-1172
1674-8115
1995-8188
DOI:10.1007/s12204-022-2431-8