Non-convex nested Benders decomposition

We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2022-11, Vol.196 (1-2), p.987-1024
Hauptverfasser: Füllner, Christian, Rebennack, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an ε -optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-021-01740-0