Time-series forecasting for ships maneuvering in waves via recurrent-type neural networks
The prediction capability of recurrent-type neural networks is investigated for real-time short-term prediction (nowcasting) of ship motions in high sea state. Specifically, the performance of recurrent neural networks, long short-term memory, and gated recurrent units models are assessed and compar...
Gespeichert in:
Veröffentlicht in: | Journal of Ocean Engineering and Marine Energy 2022-11, Vol.8 (4), p.479-487 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The prediction capability of recurrent-type neural networks is investigated for real-time short-term prediction (nowcasting) of ship motions in high sea state. Specifically, the performance of recurrent neural networks, long short-term memory, and gated recurrent units models are assessed and compared using a data set coming from computational fluid dynamics simulations of a self-propelled destroyer-type vessel in stern-quartering sea state 7. Time-series of incident wave, ship motions, rudder angle, as well as immersion probes, are used as variables for a nowcasting problem. The objective is to obtain about 20 s ahead prediction. Overall, the three methods provide promising and comparable results. |
---|---|
ISSN: | 2198-6444 2198-6452 |
DOI: | 10.1007/s40722-022-00255-w |