Application of an artificial neural network model for selection of potential lung cancer biomarkers

Determination of volatile organic compounds (VOCs) in the exhaled breath samples of lung cancer patients and healthy controls was carried out by SPME-GC/MS (solid phase microextraction- gas chromatography combined with mass spectrometry) analyses. In order to compensate for the volatile exogenous co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of breath research 2015-05, Vol.9 (2), p.027106-027106
Hauptverfasser: Ligor, Tomasz, Pater, ukasz, Buszewski, Bogus aw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Determination of volatile organic compounds (VOCs) in the exhaled breath samples of lung cancer patients and healthy controls was carried out by SPME-GC/MS (solid phase microextraction- gas chromatography combined with mass spectrometry) analyses. In order to compensate for the volatile exogenous contaminants, ambient air blank samples were also collected and analyzed. We recruited a total of 123 patients with biopsy-confirmed lung cancer and 361 healthy controls to find the potential lung cancer biomarkers. Automatic peak deconvolution and identification were performed using chromatographic data processing software (AMDIS with NIST database). All of the VOCs sample data operation, storage and management were performed using the SQL (structured query language) relational database. The selected eight VOCs could be possible biomarker candidates. In cross-validation on test data sensitivity was 63.5% and specificity 72.4% AUC 0.65. The low performance of the model has been mainly due to overfitting and the exogenous VOCs that exist in breath. The dedicated software implementing a multilayer neural network using a genetic algorithm for training was built. Further work is needed to confirm the performance of the created experimental model.
ISSN:1752-7155
1752-7163
1752-7163
DOI:10.1088/1752-7155/9/2/027106