Discrete mean estimates and the Landau-Siegel zero
Let \(\chi\) be a real primitive character to the modulus \(D\). It is proved that $$ L(1,\chi)\gg (\log D)^{-2022} $$ where the implied constant is absolute and effectively computable. In the proof, the lower bound for \(L(1,\chi)\) is first related to the distribution of zeros of a family of Diric...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(\chi\) be a real primitive character to the modulus \(D\). It is proved that $$ L(1,\chi)\gg (\log D)^{-2022} $$ where the implied constant is absolute and effectively computable. In the proof, the lower bound for \(L(1,\chi)\) is first related to the distribution of zeros of a family of Dirichlet \(L\)-functions in a certain region, and some results on the gaps between consecutive zeros are derived. Then, by evaluating certain discrete means of the large sieve type, a contradiction can be obtained if \(L(1,\chi)\) is too small. |
---|---|
ISSN: | 2331-8422 |