THREE MODEL-THEORETIC CONSTRUCTIONS FOR GENERALIZED EPSTEIN SEMANTICS

This paper introduces three model-theoretic constructions for generalized Epstein semantics: reducts, ultramodels and $\textsf {S}$ -sets. We apply these notions to obtain metatheoretical results. We prove connective inexpressibility by means of a reduct, compactness by an ultramodel and definabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of symbolic logic 2022-12, Vol.15 (4), p.1023-1032
1. Verfasser: KRAWCZYK, KRZYSZTOF A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces three model-theoretic constructions for generalized Epstein semantics: reducts, ultramodels and $\textsf {S}$ -sets. We apply these notions to obtain metatheoretical results. We prove connective inexpressibility by means of a reduct, compactness by an ultramodel and definability theorem which states that a set of generalized Epstein models is definable iff it is closed under ultramodels and $\textsf {S}$ -sets. Furthermore, a corollary concerning definability of a set of models by a single formula is given on the basis of the main theorem and the compactness theorem. We also provide an example of a natural set of generalized Epstein models which is undefinable. Its undefinability is proven by means of an $\textsf {S}$ -set.
ISSN:1755-0203
1755-0211
DOI:10.1017/S1755020321000368