A novel nature inspired 3D open lattice structure for specific energy absorption
Energy absorption is a key performance criterion for several engineering structures. Lightweight lattice structures are better suited for this purpose. The convolute design patterns that exist in nature are proven effective for several engineering applications. In this paper, a George lily flower le...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2022-12, Vol.236 (6), p.2434-2440 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Energy absorption is a key performance criterion for several engineering structures. Lightweight lattice structures are better suited for this purpose. The convolute design patterns that exist in nature are proven effective for several engineering applications. In this paper, a George lily flower leaf is considered to build a novel 3D open lattice pattern for specific energy absorption (SEA) purposes. A multi-cellular specimen is designed and fabricated using Vat photopolymerization 3D printing process. Quasi-static compression tests have been conducted and the performance of proposed structure is compared with 2.5D closed thin-walled structures and found the proposed 3D open lattice structure has shown significant improvement in SEA over other thin-walled structures. |
---|---|
ISSN: | 0954-4089 2041-3009 |
DOI: | 10.1177/09544089221092894 |