Lookback option pricing under the double Heston model using a deep learning algorithm
To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtain...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2022-12, Vol.41 (8), Article 378 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 41 |
creator | Motameni, Mahsa Mehrdoust, Farshid Najafi, Ali Reza |
description | To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtained results from mentioned method with the option price under the Monte Carlo simulation method. |
doi_str_mv | 10.1007/s40314-022-02098-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732280814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732280814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-6103281febe1ee69c69eef8a295cf12cedac74c62f281826e6b219fd831cd723</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwBzhF4hxwnK5Nj2gChjSJyzhHbepu3bqmJO2Bf0-2InHjYFmWn9cfL2P3Eh4lQPYUElAyEYAYA3ItFhdsJjVkAhTgJZshKi1UCuqa3YSwB1CZTJIZ-1w7dygLe-CuHxrX8d43tum2fOwq8nzYEa_cWLbEVxSG2D-6ilo-hhNT8Iqo5y0VvjvX7db5Ztgdb9lVXbSB7n7znG1eXzbLlVh_vL0vn9fCYgaDSCUo1LKmkiRRmts0J6p1gfnC1hItVYXNEptiHSmNKaUlyryutJK2ylDN2cM0tvfua4z3mb0bfRc3GswUogYtk0jhRFnvQvBUm_jjsfDfRoI5uWcm90x0z5zdM4soUpMoRLjbkv8b_Y_qB2zGcsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732280814</pqid></control><display><type>article</type><title>Lookback option pricing under the double Heston model using a deep learning algorithm</title><source>Springer Nature - Complete Springer Journals</source><creator>Motameni, Mahsa ; Mehrdoust, Farshid ; Najafi, Ali Reza</creator><creatorcontrib>Motameni, Mahsa ; Mehrdoust, Farshid ; Najafi, Ali Reza</creatorcontrib><description>To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtained results from mentioned method with the option price under the Monte Carlo simulation method.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-022-02098-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Deep learning ; Galerkin method ; Machine learning ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Partial differential equations</subject><ispartof>Computational & applied mathematics, 2022-12, Vol.41 (8), Article 378</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-6103281febe1ee69c69eef8a295cf12cedac74c62f281826e6b219fd831cd723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-022-02098-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-022-02098-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Motameni, Mahsa</creatorcontrib><creatorcontrib>Mehrdoust, Farshid</creatorcontrib><creatorcontrib>Najafi, Ali Reza</creatorcontrib><title>Lookback option pricing under the double Heston model using a deep learning algorithm</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtained results from mentioned method with the option price under the Monte Carlo simulation method.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Deep learning</subject><subject>Galerkin method</subject><subject>Machine learning</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwBzhF4hxwnK5Nj2gChjSJyzhHbepu3bqmJO2Bf0-2InHjYFmWn9cfL2P3Eh4lQPYUElAyEYAYA3ItFhdsJjVkAhTgJZshKi1UCuqa3YSwB1CZTJIZ-1w7dygLe-CuHxrX8d43tum2fOwq8nzYEa_cWLbEVxSG2D-6ilo-hhNT8Iqo5y0VvjvX7db5Ztgdb9lVXbSB7n7znG1eXzbLlVh_vL0vn9fCYgaDSCUo1LKmkiRRmts0J6p1gfnC1hItVYXNEptiHSmNKaUlyryutJK2ylDN2cM0tvfua4z3mb0bfRc3GswUogYtk0jhRFnvQvBUm_jjsfDfRoI5uWcm90x0z5zdM4soUpMoRLjbkv8b_Y_qB2zGcsg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Motameni, Mahsa</creator><creator>Mehrdoust, Farshid</creator><creator>Najafi, Ali Reza</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Lookback option pricing under the double Heston model using a deep learning algorithm</title><author>Motameni, Mahsa ; Mehrdoust, Farshid ; Najafi, Ali Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-6103281febe1ee69c69eef8a295cf12cedac74c62f281826e6b219fd831cd723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Deep learning</topic><topic>Galerkin method</topic><topic>Machine learning</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motameni, Mahsa</creatorcontrib><creatorcontrib>Mehrdoust, Farshid</creatorcontrib><creatorcontrib>Najafi, Ali Reza</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motameni, Mahsa</au><au>Mehrdoust, Farshid</au><au>Najafi, Ali Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lookback option pricing under the double Heston model using a deep learning algorithm</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>41</volume><issue>8</issue><artnum>378</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtained results from mentioned method with the option price under the Monte Carlo simulation method.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-022-02098-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2022-12, Vol.41 (8), Article 378 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2732280814 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Applications of Mathematics Applied physics Computational mathematics Computational Mathematics and Numerical Analysis Deep learning Galerkin method Machine learning Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Partial differential equations |
title | Lookback option pricing under the double Heston model using a deep learning algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lookback%20option%20pricing%20under%20the%20double%20Heston%20model%20using%20a%20deep%20learning%20algorithm&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Motameni,%20Mahsa&rft.date=2022-12-01&rft.volume=41&rft.issue=8&rft.artnum=378&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-022-02098-5&rft_dat=%3Cproquest_cross%3E2732280814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732280814&rft_id=info:pmid/&rfr_iscdi=true |