Lookback option pricing under the double Heston model using a deep learning algorithm

To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2022-12, Vol.41 (8), Article 378
Hauptverfasser: Motameni, Mahsa, Mehrdoust, Farshid, Najafi, Ali Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Computational & applied mathematics
container_volume 41
creator Motameni, Mahsa
Mehrdoust, Farshid
Najafi, Ali Reza
description To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtained results from mentioned method with the option price under the Monte Carlo simulation method.
doi_str_mv 10.1007/s40314-022-02098-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732280814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732280814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-6103281febe1ee69c69eef8a295cf12cedac74c62f281826e6b219fd831cd723</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwBzhF4hxwnK5Nj2gChjSJyzhHbepu3bqmJO2Bf0-2InHjYFmWn9cfL2P3Eh4lQPYUElAyEYAYA3ItFhdsJjVkAhTgJZshKi1UCuqa3YSwB1CZTJIZ-1w7dygLe-CuHxrX8d43tum2fOwq8nzYEa_cWLbEVxSG2D-6ilo-hhNT8Iqo5y0VvjvX7db5Ztgdb9lVXbSB7n7znG1eXzbLlVh_vL0vn9fCYgaDSCUo1LKmkiRRmts0J6p1gfnC1hItVYXNEptiHSmNKaUlyryutJK2ylDN2cM0tvfua4z3mb0bfRc3GswUogYtk0jhRFnvQvBUm_jjsfDfRoI5uWcm90x0z5zdM4soUpMoRLjbkv8b_Y_qB2zGcsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732280814</pqid></control><display><type>article</type><title>Lookback option pricing under the double Heston model using a deep learning algorithm</title><source>Springer Nature - Complete Springer Journals</source><creator>Motameni, Mahsa ; Mehrdoust, Farshid ; Najafi, Ali Reza</creator><creatorcontrib>Motameni, Mahsa ; Mehrdoust, Farshid ; Najafi, Ali Reza</creatorcontrib><description>To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtained results from mentioned method with the option price under the Monte Carlo simulation method.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-022-02098-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Deep learning ; Galerkin method ; Machine learning ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Partial differential equations</subject><ispartof>Computational &amp; applied mathematics, 2022-12, Vol.41 (8), Article 378</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-6103281febe1ee69c69eef8a295cf12cedac74c62f281826e6b219fd831cd723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-022-02098-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-022-02098-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Motameni, Mahsa</creatorcontrib><creatorcontrib>Mehrdoust, Farshid</creatorcontrib><creatorcontrib>Najafi, Ali Reza</creatorcontrib><title>Lookback option pricing under the double Heston model using a deep learning algorithm</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtained results from mentioned method with the option price under the Monte Carlo simulation method.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Deep learning</subject><subject>Galerkin method</subject><subject>Machine learning</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwBzhF4hxwnK5Nj2gChjSJyzhHbepu3bqmJO2Bf0-2InHjYFmWn9cfL2P3Eh4lQPYUElAyEYAYA3ItFhdsJjVkAhTgJZshKi1UCuqa3YSwB1CZTJIZ-1w7dygLe-CuHxrX8d43tum2fOwq8nzYEa_cWLbEVxSG2D-6ilo-hhNT8Iqo5y0VvjvX7db5Ztgdb9lVXbSB7n7znG1eXzbLlVh_vL0vn9fCYgaDSCUo1LKmkiRRmts0J6p1gfnC1hItVYXNEptiHSmNKaUlyryutJK2ylDN2cM0tvfua4z3mb0bfRc3GswUogYtk0jhRFnvQvBUm_jjsfDfRoI5uWcm90x0z5zdM4soUpMoRLjbkv8b_Y_qB2zGcsg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Motameni, Mahsa</creator><creator>Mehrdoust, Farshid</creator><creator>Najafi, Ali Reza</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Lookback option pricing under the double Heston model using a deep learning algorithm</title><author>Motameni, Mahsa ; Mehrdoust, Farshid ; Najafi, Ali Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-6103281febe1ee69c69eef8a295cf12cedac74c62f281826e6b219fd831cd723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Deep learning</topic><topic>Galerkin method</topic><topic>Machine learning</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motameni, Mahsa</creatorcontrib><creatorcontrib>Mehrdoust, Farshid</creatorcontrib><creatorcontrib>Najafi, Ali Reza</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motameni, Mahsa</au><au>Mehrdoust, Farshid</au><au>Najafi, Ali Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lookback option pricing under the double Heston model using a deep learning algorithm</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>41</volume><issue>8</issue><artnum>378</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtained results from mentioned method with the option price under the Monte Carlo simulation method.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-022-02098-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2022-12, Vol.41 (8), Article 378
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2732280814
source Springer Nature - Complete Springer Journals
subjects Algorithms
Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Deep learning
Galerkin method
Machine learning
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Partial differential equations
title Lookback option pricing under the double Heston model using a deep learning algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A49%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lookback%20option%20pricing%20under%20the%20double%20Heston%20model%20using%20a%20deep%20learning%20algorithm&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Motameni,%20Mahsa&rft.date=2022-12-01&rft.volume=41&rft.issue=8&rft.artnum=378&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-022-02098-5&rft_dat=%3Cproquest_cross%3E2732280814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732280814&rft_id=info:pmid/&rfr_iscdi=true