Lookback option pricing under the double Heston model using a deep learning algorithm
To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtain...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2022-12, Vol.41 (8), Article 378 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To price floating strike lookback options, we obtain a partial differential equation (PDE) according to the double Heston model. To solve the PDE, we employ a deep learning algorithm called the deep Galerkin method (DGM), which is well-suited for high-dimensional PDEs. Finally, we compare the obtained results from mentioned method with the option price under the Monte Carlo simulation method. |
---|---|
ISSN: | 2238-3603 1807-0302 |
DOI: | 10.1007/s40314-022-02098-5 |