A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks with Applications to Probability Theory
Aharoni et al. (J Combinat Theory, Ser B 101:1–17, 2010) proved the max-flow min-cut theorem for countable networks, namely that in every countable network with finite edge capacities, there exists a flow and a cut such that the flow saturates all outgoing edges of the cut and is zero on all incomin...
Gespeichert in:
Veröffentlicht in: | Journal of automated reasoning 2022-11, Vol.66 (4), p.585-610 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aharoni et al. (J Combinat Theory, Ser B 101:1–17, 2010) proved the max-flow min-cut theorem for countable networks, namely that in every countable network with finite edge capacities, there exists a flow and a cut such that the flow saturates all outgoing edges of the cut and is zero on all incoming edges. In this paper, we formalize their proof in Isabelle/HOL and thereby identify and fix several problems with their proof. We also provide a simpler proof for networks where the total outgoing capacity of all vertices other than the source and the sink is finite. This proof is based on the max-flow min-cut theorem for finite networks. As a use case, we formalize a characterization theorem for relation lifting on discrete probability distributions and two of its applications. |
---|---|
ISSN: | 0168-7433 1573-0670 |
DOI: | 10.1007/s10817-022-09616-4 |