Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity
We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity ∂ t u = [ | D u | q + a ( x , t ) | D u | s ] Δ u + ( p - 2 ) D 2 u Du | D u | , Du | D u | , where 1 < p < ∞ , - 1 < q ≤ s < ∞ and a ( x , t ) ≥ 0 . The motivation to inve...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2023, Vol.62 (1), Article 2 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Calculus of variations and partial differential equations |
container_volume | 62 |
creator | Fang, Yuzhou Zhang, Chao |
description | We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity
∂
t
u
=
[
|
D
u
|
q
+
a
(
x
,
t
)
|
D
u
|
s
]
Δ
u
+
(
p
-
2
)
D
2
u
Du
|
D
u
|
,
Du
|
D
u
|
,
where
1
<
p
<
∞
,
-
1
<
q
≤
s
<
∞
and
a
(
x
,
t
)
≥
0
. The motivation to investigate this model stems not only from the connections to tug-of-war like stochastic games with noise, but also from the non-standard growth problems of double phase type. According to different values of
q
,
s
, such equations include nonhomogeneous degeneracy or singularity, and may involve these two features simultaneously. In particular, when
q
=
p
-
2
and
q
<
s
, it will encompass the parabolic
p
-Laplacian both in divergence form and in non-divergence form. We aim to explore the
L
∞
to
C
1
,
α
regularity theory for the aforementioned problem. To be precise, under some proper assumptions, we use geometrical methods to establish the local Hölder regularity of spatial gradients of viscosity solutions. |
doi_str_mv | 10.1007/s00526-022-02360-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732029601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732029601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8602301263ece32457a3db470f40c8bd343aad0befa697127aa75273b2dd2b043</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9HJn6btURZ1hQVB9CghbdPdLN1kN2mRfnuzVvHmYZjJ8N6b8EPomsItBcjvIkDGJAHGUnEJZDxBMyp4ehY8O0UzKIUgTMryHF3EuAWgWcHEDH28mvXQ6WD7Ebc-4MOgoyWddUYHvNdBV76zNTZp31vvIv60_QY77zZ-59fGGT9E3JjjFHQ94hQRrfuNvERnre6iufrpc_T--PC2WJLVy9Pz4n5Fak7LnhQyfRook9zUhjOR5Zo3lcihFVAXVcMF17qByrRaljlludZ5xnJesaZhFQg-RzdT7j74w2Bir7Z-CC6dVEnGgJUSaFKxSVUHH2MwrdoHu9NhVBTUEaOaMKqEUX1jVGMy8ckUk9itTfiL_sf1Bcsqd4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732029601</pqid></control><display><type>article</type><title>Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity</title><source>SpringerNature Journals</source><creator>Fang, Yuzhou ; Zhang, Chao</creator><creatorcontrib>Fang, Yuzhou ; Zhang, Chao</creatorcontrib><description>We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity
∂
t
u
=
[
|
D
u
|
q
+
a
(
x
,
t
)
|
D
u
|
s
]
Δ
u
+
(
p
-
2
)
D
2
u
Du
|
D
u
|
,
Du
|
D
u
|
,
where
1
<
p
<
∞
,
-
1
<
q
≤
s
<
∞
and
a
(
x
,
t
)
≥
0
. The motivation to investigate this model stems not only from the connections to tug-of-war like stochastic games with noise, but also from the non-standard growth problems of double phase type. According to different values of
q
,
s
, such equations include nonhomogeneous degeneracy or singularity, and may involve these two features simultaneously. In particular, when
q
=
p
-
2
and
q
<
s
, it will encompass the parabolic
p
-Laplacian both in divergence form and in non-divergence form. We aim to explore the
L
∞
to
C
1
,
α
regularity theory for the aforementioned problem. To be precise, under some proper assumptions, we use geometrical methods to establish the local Hölder regularity of spatial gradients of viscosity solutions.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-022-02360-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Divergence ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Regularity ; Singularity (mathematics) ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2023, Vol.62 (1), Article 2</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8602301263ece32457a3db470f40c8bd343aad0befa697127aa75273b2dd2b043</citedby><cites>FETCH-LOGICAL-c319t-8602301263ece32457a3db470f40c8bd343aad0befa697127aa75273b2dd2b043</cites><orcidid>0000-0003-2702-2050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-022-02360-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-022-02360-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Fang, Yuzhou</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><title>Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity
∂
t
u
=
[
|
D
u
|
q
+
a
(
x
,
t
)
|
D
u
|
s
]
Δ
u
+
(
p
-
2
)
D
2
u
Du
|
D
u
|
,
Du
|
D
u
|
,
where
1
<
p
<
∞
,
-
1
<
q
≤
s
<
∞
and
a
(
x
,
t
)
≥
0
. The motivation to investigate this model stems not only from the connections to tug-of-war like stochastic games with noise, but also from the non-standard growth problems of double phase type. According to different values of
q
,
s
, such equations include nonhomogeneous degeneracy or singularity, and may involve these two features simultaneously. In particular, when
q
=
p
-
2
and
q
<
s
, it will encompass the parabolic
p
-Laplacian both in divergence form and in non-divergence form. We aim to explore the
L
∞
to
C
1
,
α
regularity theory for the aforementioned problem. To be precise, under some proper assumptions, we use geometrical methods to establish the local Hölder regularity of spatial gradients of viscosity solutions.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Divergence</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularity</subject><subject>Singularity (mathematics)</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9HJn6btURZ1hQVB9CghbdPdLN1kN2mRfnuzVvHmYZjJ8N6b8EPomsItBcjvIkDGJAHGUnEJZDxBMyp4ehY8O0UzKIUgTMryHF3EuAWgWcHEDH28mvXQ6WD7Ebc-4MOgoyWddUYHvNdBV76zNTZp31vvIv60_QY77zZ-59fGGT9E3JjjFHQ94hQRrfuNvERnre6iufrpc_T--PC2WJLVy9Pz4n5Fak7LnhQyfRook9zUhjOR5Zo3lcihFVAXVcMF17qByrRaljlludZ5xnJesaZhFQg-RzdT7j74w2Bir7Z-CC6dVEnGgJUSaFKxSVUHH2MwrdoHu9NhVBTUEaOaMKqEUX1jVGMy8ckUk9itTfiL_sf1Bcsqd4k</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Fang, Yuzhou</creator><creator>Zhang, Chao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-2702-2050</orcidid></search><sort><creationdate>2023</creationdate><title>Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity</title><author>Fang, Yuzhou ; Zhang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8602301263ece32457a3db470f40c8bd343aad0befa697127aa75273b2dd2b043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Divergence</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularity</topic><topic>Singularity (mathematics)</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yuzhou</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yuzhou</au><au>Zhang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2023</date><risdate>2023</risdate><volume>62</volume><issue>1</issue><artnum>2</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity
∂
t
u
=
[
|
D
u
|
q
+
a
(
x
,
t
)
|
D
u
|
s
]
Δ
u
+
(
p
-
2
)
D
2
u
Du
|
D
u
|
,
Du
|
D
u
|
,
where
1
<
p
<
∞
,
-
1
<
q
≤
s
<
∞
and
a
(
x
,
t
)
≥
0
. The motivation to investigate this model stems not only from the connections to tug-of-war like stochastic games with noise, but also from the non-standard growth problems of double phase type. According to different values of
q
,
s
, such equations include nonhomogeneous degeneracy or singularity, and may involve these two features simultaneously. In particular, when
q
=
p
-
2
and
q
<
s
, it will encompass the parabolic
p
-Laplacian both in divergence form and in non-divergence form. We aim to explore the
L
∞
to
C
1
,
α
regularity theory for the aforementioned problem. To be precise, under some proper assumptions, we use geometrical methods to establish the local Hölder regularity of spatial gradients of viscosity solutions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-022-02360-y</doi><orcidid>https://orcid.org/0000-0003-2702-2050</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2023, Vol.62 (1), Article 2 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2732029601 |
source | SpringerNature Journals |
subjects | Analysis Calculus of Variations and Optimal Control Optimization Control Divergence Mathematical and Computational Physics Mathematics Mathematics and Statistics Regularity Singularity (mathematics) Systems Theory Theoretical |
title | Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularity%20for%20quasi-linear%20parabolic%20equations%20with%20nonhomogeneous%20degeneracy%20or%20singularity&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Fang,%20Yuzhou&rft.date=2023&rft.volume=62&rft.issue=1&rft.artnum=2&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-022-02360-y&rft_dat=%3Cproquest_cross%3E2732029601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732029601&rft_id=info:pmid/&rfr_iscdi=true |