Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity

We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity ∂ t u = [ | D u | q + a ( x , t ) | D u | s ] Δ u + ( p - 2 ) D 2 u Du | D u | , Du | D u | , where 1 < p < ∞ , - 1 < q ≤ s < ∞ and a ( x , t ) ≥ 0 . The motivation to inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023, Vol.62 (1), Article 2
Hauptverfasser: Fang, Yuzhou, Zhang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 62
creator Fang, Yuzhou
Zhang, Chao
description We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity ∂ t u = [ | D u | q + a ( x , t ) | D u | s ] Δ u + ( p - 2 ) D 2 u Du | D u | , Du | D u | , where 1 < p < ∞ , - 1 < q ≤ s < ∞ and a ( x , t ) ≥ 0 . The motivation to investigate this model stems not only from the connections to tug-of-war like stochastic games with noise, but also from the non-standard growth problems of double phase type. According to different values of q ,  s , such equations include nonhomogeneous degeneracy or singularity, and may involve these two features simultaneously. In particular, when q = p - 2 and q < s , it will encompass the parabolic p -Laplacian both in divergence form and in non-divergence form. We aim to explore the L ∞ to C 1 , α regularity theory for the aforementioned problem. To be precise, under some proper assumptions, we use geometrical methods to establish the local Hölder regularity of spatial gradients of viscosity solutions.
doi_str_mv 10.1007/s00526-022-02360-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2732029601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732029601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8602301263ece32457a3db470f40c8bd343aad0befa697127aa75273b2dd2b043</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9HJn6btURZ1hQVB9CghbdPdLN1kN2mRfnuzVvHmYZjJ8N6b8EPomsItBcjvIkDGJAHGUnEJZDxBMyp4ehY8O0UzKIUgTMryHF3EuAWgWcHEDH28mvXQ6WD7Ebc-4MOgoyWddUYHvNdBV76zNTZp31vvIv60_QY77zZ-59fGGT9E3JjjFHQ94hQRrfuNvERnre6iufrpc_T--PC2WJLVy9Pz4n5Fak7LnhQyfRook9zUhjOR5Zo3lcihFVAXVcMF17qByrRaljlludZ5xnJesaZhFQg-RzdT7j74w2Bir7Z-CC6dVEnGgJUSaFKxSVUHH2MwrdoHu9NhVBTUEaOaMKqEUX1jVGMy8ckUk9itTfiL_sf1Bcsqd4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732029601</pqid></control><display><type>article</type><title>Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity</title><source>SpringerNature Journals</source><creator>Fang, Yuzhou ; Zhang, Chao</creator><creatorcontrib>Fang, Yuzhou ; Zhang, Chao</creatorcontrib><description>We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity ∂ t u = [ | D u | q + a ( x , t ) | D u | s ] Δ u + ( p - 2 ) D 2 u Du | D u | , Du | D u | , where 1 &lt; p &lt; ∞ , - 1 &lt; q ≤ s &lt; ∞ and a ( x , t ) ≥ 0 . The motivation to investigate this model stems not only from the connections to tug-of-war like stochastic games with noise, but also from the non-standard growth problems of double phase type. According to different values of q ,  s , such equations include nonhomogeneous degeneracy or singularity, and may involve these two features simultaneously. In particular, when q = p - 2 and q &lt; s , it will encompass the parabolic p -Laplacian both in divergence form and in non-divergence form. We aim to explore the L ∞ to C 1 , α regularity theory for the aforementioned problem. To be precise, under some proper assumptions, we use geometrical methods to establish the local Hölder regularity of spatial gradients of viscosity solutions.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-022-02360-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Divergence ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Regularity ; Singularity (mathematics) ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2023, Vol.62 (1), Article 2</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8602301263ece32457a3db470f40c8bd343aad0befa697127aa75273b2dd2b043</citedby><cites>FETCH-LOGICAL-c319t-8602301263ece32457a3db470f40c8bd343aad0befa697127aa75273b2dd2b043</cites><orcidid>0000-0003-2702-2050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-022-02360-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-022-02360-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Fang, Yuzhou</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><title>Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity ∂ t u = [ | D u | q + a ( x , t ) | D u | s ] Δ u + ( p - 2 ) D 2 u Du | D u | , Du | D u | , where 1 &lt; p &lt; ∞ , - 1 &lt; q ≤ s &lt; ∞ and a ( x , t ) ≥ 0 . The motivation to investigate this model stems not only from the connections to tug-of-war like stochastic games with noise, but also from the non-standard growth problems of double phase type. According to different values of q ,  s , such equations include nonhomogeneous degeneracy or singularity, and may involve these two features simultaneously. In particular, when q = p - 2 and q &lt; s , it will encompass the parabolic p -Laplacian both in divergence form and in non-divergence form. We aim to explore the L ∞ to C 1 , α regularity theory for the aforementioned problem. To be precise, under some proper assumptions, we use geometrical methods to establish the local Hölder regularity of spatial gradients of viscosity solutions.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Divergence</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularity</subject><subject>Singularity (mathematics)</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9HJn6btURZ1hQVB9CghbdPdLN1kN2mRfnuzVvHmYZjJ8N6b8EPomsItBcjvIkDGJAHGUnEJZDxBMyp4ehY8O0UzKIUgTMryHF3EuAWgWcHEDH28mvXQ6WD7Ebc-4MOgoyWddUYHvNdBV76zNTZp31vvIv60_QY77zZ-59fGGT9E3JjjFHQ94hQRrfuNvERnre6iufrpc_T--PC2WJLVy9Pz4n5Fak7LnhQyfRook9zUhjOR5Zo3lcihFVAXVcMF17qByrRaljlludZ5xnJesaZhFQg-RzdT7j74w2Bir7Z-CC6dVEnGgJUSaFKxSVUHH2MwrdoHu9NhVBTUEaOaMKqEUX1jVGMy8ckUk9itTfiL_sf1Bcsqd4k</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Fang, Yuzhou</creator><creator>Zhang, Chao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-2702-2050</orcidid></search><sort><creationdate>2023</creationdate><title>Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity</title><author>Fang, Yuzhou ; Zhang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8602301263ece32457a3db470f40c8bd343aad0befa697127aa75273b2dd2b043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Divergence</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularity</topic><topic>Singularity (mathematics)</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yuzhou</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yuzhou</au><au>Zhang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2023</date><risdate>2023</risdate><volume>62</volume><issue>1</issue><artnum>2</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity ∂ t u = [ | D u | q + a ( x , t ) | D u | s ] Δ u + ( p - 2 ) D 2 u Du | D u | , Du | D u | , where 1 &lt; p &lt; ∞ , - 1 &lt; q ≤ s &lt; ∞ and a ( x , t ) ≥ 0 . The motivation to investigate this model stems not only from the connections to tug-of-war like stochastic games with noise, but also from the non-standard growth problems of double phase type. According to different values of q ,  s , such equations include nonhomogeneous degeneracy or singularity, and may involve these two features simultaneously. In particular, when q = p - 2 and q &lt; s , it will encompass the parabolic p -Laplacian both in divergence form and in non-divergence form. We aim to explore the L ∞ to C 1 , α regularity theory for the aforementioned problem. To be precise, under some proper assumptions, we use geometrical methods to establish the local Hölder regularity of spatial gradients of viscosity solutions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-022-02360-y</doi><orcidid>https://orcid.org/0000-0003-2702-2050</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2023, Vol.62 (1), Article 2
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2732029601
source SpringerNature Journals
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Divergence
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Regularity
Singularity (mathematics)
Systems Theory
Theoretical
title Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularity%20for%20quasi-linear%20parabolic%20equations%20with%20nonhomogeneous%20degeneracy%20or%20singularity&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Fang,%20Yuzhou&rft.date=2023&rft.volume=62&rft.issue=1&rft.artnum=2&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-022-02360-y&rft_dat=%3Cproquest_cross%3E2732029601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732029601&rft_id=info:pmid/&rfr_iscdi=true