Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity
We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity ∂ t u = [ | D u | q + a ( x , t ) | D u | s ] Δ u + ( p - 2 ) D 2 u Du | D u | , Du | D u | , where 1 < p < ∞ , - 1 < q ≤ s < ∞ and a ( x , t ) ≥ 0 . The motivation to inve...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2023, Vol.62 (1), Article 2 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new class of quasi-linear parabolic equations involving nonhomogeneous degeneracy or/and singularity
∂
t
u
=
[
|
D
u
|
q
+
a
(
x
,
t
)
|
D
u
|
s
]
Δ
u
+
(
p
-
2
)
D
2
u
Du
|
D
u
|
,
Du
|
D
u
|
,
where
1
<
p
<
∞
,
-
1
<
q
≤
s
<
∞
and
a
(
x
,
t
)
≥
0
. The motivation to investigate this model stems not only from the connections to tug-of-war like stochastic games with noise, but also from the non-standard growth problems of double phase type. According to different values of
q
,
s
, such equations include nonhomogeneous degeneracy or singularity, and may involve these two features simultaneously. In particular, when
q
=
p
-
2
and
q
<
s
, it will encompass the parabolic
p
-Laplacian both in divergence form and in non-divergence form. We aim to explore the
L
∞
to
C
1
,
α
regularity theory for the aforementioned problem. To be precise, under some proper assumptions, we use geometrical methods to establish the local Hölder regularity of spatial gradients of viscosity solutions. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-022-02360-y |