Singular Arcs in Optimal Periodic Controls for Scalar Dynamics and Integral Input Constraint
We revisit recent results about optimal periodic control for scalar dynamics with input integral constraint, under lack of convexity and concavity. We show that in this more general framework, the optimal solutions are bang-singular-bang and generalize the bang-bang solutions for the convex case and...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2022-11, Vol.195 (2), p.548-574 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We revisit recent results about optimal periodic control for scalar dynamics with input integral constraint, under lack of convexity and concavity. We show that in this more general framework, the optimal solutions are bang-singular-bang and generalize the bang-bang solutions for the convex case and purely singular for the concave one. We introduce a non-local slope condition to characterize the singular arcs. The results are illustrated on a class of bioprocesses models. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-022-02095-y |