Convex-Cyclic Weighted Translations On Locally Compact Groups
A bounded linear operator \(T\) on a Banach space \(X\) is called a convex-cyclic operator if there exists a vector \(x \in X\) such that the convex hull of \(Orb(T, x)\) is dense in \(X\). In this paper, for given an aperiodic element \(g\) in a locally compact group \(G\), we give some sufficient...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A bounded linear operator \(T\) on a Banach space \(X\) is called a convex-cyclic operator if there exists a vector \(x \in X\) such that the convex hull of \(Orb(T, x)\) is dense in \(X\). In this paper, for given an aperiodic element \(g\) in a locally compact group \(G\), we give some sufficient conditions for a weighted translation operator \(T_{g,w}: f \mapsto w\cdot f*\delta_g\) on \(\mathfrak{L}^{p}(G)\) to be convex-cyclic. A necessary condition is also studied. At the end, to explain the obtained results, some examples are given. |
---|---|
ISSN: | 2331-8422 |