Bayesian Optimization Approach for RF Circuit Synthesis via Multitask Neural Network Enhanced Gaussian Process

An RF integrated circuit design heavily relies upon experienced experts to iteratively tune the circuit parameters. A Bayesian optimization (BO) method is explored in existing works for automated analog and RF circuit synthesis. The overall performance can be further improved by constructing a model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2022-11, Vol.70 (11), p.4787-4795
Hauptverfasser: Huang, Jiangli, Tao, Cong, Yang, Fan, Yan, Changhao, Zhou, Dian, Zeng, Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An RF integrated circuit design heavily relies upon experienced experts to iteratively tune the circuit parameters. A Bayesian optimization (BO) method is explored in existing works for automated analog and RF circuit synthesis. The overall performance can be further improved by constructing a model to exploit the correlation among different circuit specifications. In this article, we propose a BO approach for RF circuit synthesis via a multitask neural network enhanced Gaussian process (MTNN-GP). We present a novel multioutput GP model, in which the kernel functions of multiple outputs are constructed from a multitask neural network with shared hidden layers and task-specific layers. Therefore, the correlation between the outputs can be captured by the shared hidden layers. Our proposed MTNN-GP-based BO method is compared with several state-of-the-art BO methods on three real word RF circuits and achieves best performance. The experimental results demonstrate the effectiveness and efficiency of our proposed method.
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2022.3194980