Bayesian Optimization Approach for RF Circuit Synthesis via Multitask Neural Network Enhanced Gaussian Process
An RF integrated circuit design heavily relies upon experienced experts to iteratively tune the circuit parameters. A Bayesian optimization (BO) method is explored in existing works for automated analog and RF circuit synthesis. The overall performance can be further improved by constructing a model...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2022-11, Vol.70 (11), p.4787-4795 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An RF integrated circuit design heavily relies upon experienced experts to iteratively tune the circuit parameters. A Bayesian optimization (BO) method is explored in existing works for automated analog and RF circuit synthesis. The overall performance can be further improved by constructing a model to exploit the correlation among different circuit specifications. In this article, we propose a BO approach for RF circuit synthesis via a multitask neural network enhanced Gaussian process (MTNN-GP). We present a novel multioutput GP model, in which the kernel functions of multiple outputs are constructed from a multitask neural network with shared hidden layers and task-specific layers. Therefore, the correlation between the outputs can be captured by the shared hidden layers. Our proposed MTNN-GP-based BO method is compared with several state-of-the-art BO methods on three real word RF circuits and achieves best performance. The experimental results demonstrate the effectiveness and efficiency of our proposed method. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2022.3194980 |