Punching Shear Resistance of Corroded Slab–Column Connections Subjected to Eccentric Load

AbstractDue to the use of deicing salt, marine and offshore environments may cause rebar corrosion in RC flat-slab floor systems. This increases the possibility of punching shear failure of slab–column connections. However, few research results are available for RC slab–column connections with corro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural engineering (New York, N.Y.) N.Y.), 2023-01, Vol.149 (1)
Hauptverfasser: Weng, Yun-Hao, Fu, Feng, Qian, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractDue to the use of deicing salt, marine and offshore environments may cause rebar corrosion in RC flat-slab floor systems. This increases the possibility of punching shear failure of slab–column connections. However, few research results are available for RC slab–column connections with corroded rebar under eccentric load, which is very common in realistic loading conditions. To fill this gap, 15 full-scale RC flat slab–column connections were fabricated and tested to investigate the performance of corroded slab–column connections under eccentric load. The design variables included reinforcement ratio, loading eccentricity, and degree of rebar corrosion. There were two stages of the experimental process, including (1) accelerated rebar corrosion tests; and (2) quasi-static tests. It was found from the test results that, in general, rebar corrosion had detrimental effects on the punching shear strength and stiffness of the connections. In addition, corrosion of reinforcement may change the failure mode of slab–column connections. However, it was unexpected that the energy-dissipating capacity and deformation capacity of slab–column connections with high reinforcement ratio and small loading eccentricity increased with increasing corrosion degree.
ISSN:0733-9445
1943-541X
DOI:10.1061/(ASCE)ST.1943-541X.0003504