Dynamical degrees of affine-triangular automorphisms of affine spaces

We study the possible dynamical degrees of automorphisms of the affine space $\mathbb {A}^n$ . In dimension $n=3$ , we determine all dynamical degrees arising from the composition of an affine automorphism with a triangular one. This generalizes the easier case of shift-like automorphisms which can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2022-12, Vol.42 (12), p.3551-3592
Hauptverfasser: BLANC, JÉRÉMY, VAN SANTEN, IMMANUEL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3592
container_issue 12
container_start_page 3551
container_title Ergodic theory and dynamical systems
container_volume 42
creator BLANC, JÉRÉMY
VAN SANTEN, IMMANUEL
description We study the possible dynamical degrees of automorphisms of the affine space $\mathbb {A}^n$ . In dimension $n=3$ , we determine all dynamical degrees arising from the composition of an affine automorphism with a triangular one. This generalizes the easier case of shift-like automorphisms which can be studied in any dimension. We also prove that each weak Perron number is the dynamical degree of an affine-triangular automorphism of the affine space $\mathbb {A}^n$ for some n, and we give the best possible n for quadratic integers, which is either $3$ or $4$ .
doi_str_mv 10.1017/etds.2021.90
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731671114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2021_90</cupid><sourcerecordid>2731671114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-cd86938a7de99635a64712132df993e4ba6ed2475d5a934277449a164ee420b33</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EEqWw4wMisSXBYzt2vUSlPKRKbGBtTeNJSNU8sJNF_55UrQQLVrM5c6_uYewWeAYczAMNPmaCC8gsP2MzUNqmSoE5ZzMOSqZykZtLdhXjlnMuweQztnrat9jUBe4ST1UgiklXJliWdUvpEGpsq3GHIcFx6Jou9F91bP4gSeyxoHjNLkrcRbo53Tn7fF59LF_T9fvL2_JxnRaSiyEt_EJbuUDjyVotc9TKgAApfGmtJLVBTV4ok_scrVTCGKUsglZESvCNlHN2d8ztQ_c9UhzcthtDO1U6YSRoAzDtnLP7I1WELsZApetD3WDYO-DuIModRLmDKGf5hGcnHJtNqH1Fv6n_PvwA5xJqYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731671114</pqid></control><display><type>article</type><title>Dynamical degrees of affine-triangular automorphisms of affine spaces</title><source>Cambridge Journals</source><creator>BLANC, JÉRÉMY ; VAN SANTEN, IMMANUEL</creator><creatorcontrib>BLANC, JÉRÉMY ; VAN SANTEN, IMMANUEL</creatorcontrib><description>We study the possible dynamical degrees of automorphisms of the affine space $\mathbb {A}^n$ . In dimension $n=3$ , we determine all dynamical degrees arising from the composition of an affine automorphism with a triangular one. This generalizes the easier case of shift-like automorphisms which can be studied in any dimension. We also prove that each weak Perron number is the dynamical degree of an affine-triangular automorphism of the affine space $\mathbb {A}^n$ for some n, and we give the best possible n for quadratic integers, which is either $3$ or $4$ .</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2021.90</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Automorphisms ; Original Article</subject><ispartof>Ergodic theory and dynamical systems, 2022-12, Vol.42 (12), p.3551-3592</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-cd86938a7de99635a64712132df993e4ba6ed2475d5a934277449a164ee420b33</citedby><cites>FETCH-LOGICAL-c302t-cd86938a7de99635a64712132df993e4ba6ed2475d5a934277449a164ee420b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385721000900/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>BLANC, JÉRÉMY</creatorcontrib><creatorcontrib>VAN SANTEN, IMMANUEL</creatorcontrib><title>Dynamical degrees of affine-triangular automorphisms of affine spaces</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We study the possible dynamical degrees of automorphisms of the affine space $\mathbb {A}^n$ . In dimension $n=3$ , we determine all dynamical degrees arising from the composition of an affine automorphism with a triangular one. This generalizes the easier case of shift-like automorphisms which can be studied in any dimension. We also prove that each weak Perron number is the dynamical degree of an affine-triangular automorphism of the affine space $\mathbb {A}^n$ for some n, and we give the best possible n for quadratic integers, which is either $3$ or $4$ .</description><subject>Algebra</subject><subject>Automorphisms</subject><subject>Original Article</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkMtOwzAQRS0EEqWw4wMisSXBYzt2vUSlPKRKbGBtTeNJSNU8sJNF_55UrQQLVrM5c6_uYewWeAYczAMNPmaCC8gsP2MzUNqmSoE5ZzMOSqZykZtLdhXjlnMuweQztnrat9jUBe4ST1UgiklXJliWdUvpEGpsq3GHIcFx6Jou9F91bP4gSeyxoHjNLkrcRbo53Tn7fF59LF_T9fvL2_JxnRaSiyEt_EJbuUDjyVotc9TKgAApfGmtJLVBTV4ok_scrVTCGKUsglZESvCNlHN2d8ztQ_c9UhzcthtDO1U6YSRoAzDtnLP7I1WELsZApetD3WDYO-DuIModRLmDKGf5hGcnHJtNqH1Fv6n_PvwA5xJqYA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>BLANC, JÉRÉMY</creator><creator>VAN SANTEN, IMMANUEL</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20221201</creationdate><title>Dynamical degrees of affine-triangular automorphisms of affine spaces</title><author>BLANC, JÉRÉMY ; VAN SANTEN, IMMANUEL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-cd86938a7de99635a64712132df993e4ba6ed2475d5a934277449a164ee420b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Automorphisms</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BLANC, JÉRÉMY</creatorcontrib><creatorcontrib>VAN SANTEN, IMMANUEL</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BLANC, JÉRÉMY</au><au>VAN SANTEN, IMMANUEL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical degrees of affine-triangular automorphisms of affine spaces</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>42</volume><issue>12</issue><spage>3551</spage><epage>3592</epage><pages>3551-3592</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We study the possible dynamical degrees of automorphisms of the affine space $\mathbb {A}^n$ . In dimension $n=3$ , we determine all dynamical degrees arising from the composition of an affine automorphism with a triangular one. This generalizes the easier case of shift-like automorphisms which can be studied in any dimension. We also prove that each weak Perron number is the dynamical degree of an affine-triangular automorphism of the affine space $\mathbb {A}^n$ for some n, and we give the best possible n for quadratic integers, which is either $3$ or $4$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2021.90</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2022-12, Vol.42 (12), p.3551-3592
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_2731671114
source Cambridge Journals
subjects Algebra
Automorphisms
Original Article
title Dynamical degrees of affine-triangular automorphisms of affine spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20degrees%20of%20affine-triangular%20automorphisms%20of%20affine%20spaces&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=BLANC,%20J%C3%89R%C3%89MY&rft.date=2022-12-01&rft.volume=42&rft.issue=12&rft.spage=3551&rft.epage=3592&rft.pages=3551-3592&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2021.90&rft_dat=%3Cproquest_cross%3E2731671114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731671114&rft_id=info:pmid/&rft_cupid=10_1017_etds_2021_90&rfr_iscdi=true