Dynamical degrees of affine-triangular automorphisms of affine spaces
We study the possible dynamical degrees of automorphisms of the affine space $\mathbb {A}^n$ . In dimension $n=3$ , we determine all dynamical degrees arising from the composition of an affine automorphism with a triangular one. This generalizes the easier case of shift-like automorphisms which can...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2022-12, Vol.42 (12), p.3551-3592 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the possible dynamical degrees of automorphisms of the affine space
$\mathbb {A}^n$
. In dimension
$n=3$
, we determine all dynamical degrees arising from the composition of an affine automorphism with a triangular one. This generalizes the easier case of shift-like automorphisms which can be studied in any dimension. We also prove that each weak Perron number is the dynamical degree of an affine-triangular automorphism of the affine space
$\mathbb {A}^n$
for some n, and we give the best possible n for quadratic integers, which is either
$3$
or
$4$
. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2021.90 |