Should We Condition on the Number of Points When Modelling Spatial Point Patterns?

Summary We discuss the practice of directly or indirectly assuming a model for the number of points when modelling spatial point patterns even though it is rarely possible to validate such a model in practice because most point pattern data consist of only one pattern. We therefore explore the possi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International statistical review 2022-12, Vol.90 (3), p.551-562
Hauptverfasser: Møller, Jesper, Vihrs, Ninna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary We discuss the practice of directly or indirectly assuming a model for the number of points when modelling spatial point patterns even though it is rarely possible to validate such a model in practice because most point pattern data consist of only one pattern. We therefore explore the possibility to condition on the number of points instead when fitting and validating spatial point process models. In a simulation study with different popular spatial point process models, we consider model validation using global envelope tests based on functional summary statistics. We find that conditioning on the number of points will for some functional summary statistics lead to more narrow envelopes and thus stronger tests and that it can also be useful for correcting for some conservativeness in the tests when testing composite hypothesis. However, for other functional summary statistics, it makes little or no difference to condition on the number of points. When estimating parameters in popular spatial point process models, we conclude that for mathematical and computational reasons, it is convenient to assume a distribution for the number of points.
ISSN:0306-7734
1751-5823
DOI:10.1111/insr.12501