Commutativity preserving transformations on conjugacy classes of compact self-adjoint operators

Let H be a complex Hilbert space of dimension not less than 3 and let C be a conjugacy class of compact self-adjoint operators on H. Suppose that the dimension of the kernels of operators from C is not less than the dimension of their ranges. In the case when C is formed by operators of finite rank...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2022-09, Vol.649, p.390-407
1. Verfasser: Pankov, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H be a complex Hilbert space of dimension not less than 3 and let C be a conjugacy class of compact self-adjoint operators on H. Suppose that the dimension of the kernels of operators from C is not less than the dimension of their ranges. In the case when C is formed by operators of finite rank k and dim⁡H=2k, we require that k≥4. We show that every bijective transformation of C preserving the commutativity in both directions is induced by a unitary or anti-unitary operator up to a permutation of eigenspaces of the same dimension.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2022.05.015