MSAGNet: Multi-Stream Attribute-Guided Network for Occluded Pedestrian Detection

Pedestrian detection plays an indispensable role in human-centric applications. Although having enjoyed the merits of generic object detectors based on deep learning frameworks, pedestrian detection is still a persistent crucial task since the pedestrians often gather together and occlude each other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2022, Vol.29, p.1-5
Hauptverfasser: Zhang, Hong, Yan, Chaoqi, Li, Xuliang, Yang, Yifan, Yuan, Ding
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pedestrian detection plays an indispensable role in human-centric applications. Although having enjoyed the merits of generic object detectors based on deep learning frameworks, pedestrian detection is still a persistent crucial task since the pedestrians often gather together and occlude each other. In this study, we propose a simple yet effective Multi-Stream Attribute-Guided Network (MSAGNet) to regard occluded pedestrian detection as a standard central point and height estimation problem. Specifically, we focus on searching for the central points of the pedestrians and predicting the scales and offsets of the corresponding pedestrians. Meanwhile, an adaptive weighting parameter, i.e., Intersection over the Visible part region of ground truth (IoV), is utilized to conduct accurate bounding box regression. Furthermore, a novel nonlinear Non-Maximum Suppression (NMS) is proposed to flexibly prune false positives and decrease the miss rate of adjacent overlapping pedestrians. Experimental results on Caltech-USA, CityPersons, CrowdHuman and WiderPerson pedestrian datasets show that the proposed MSAGNet can obtain significant performance boosts, while maintaining a reasonable run-time speed.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2022.3215920