Synthesis and characterization of ytterbium oxide: A novel CMAS‐resistant environmental barrier coating material

Demand for more powerful aircraft promotes development of ceramic matrix composites and environmental barrier coating (EBC). A promising EBC material, ytterbium oxide (Yb2O3), was fabricated by hot pressing, and its properties were systemically investigated. The evaluation of thermal properties prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2023-01, Vol.106 (1), p.621-631
Hauptverfasser: Zhang, Guangheng, Zhang, Jie, Wang, Jingyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Demand for more powerful aircraft promotes development of ceramic matrix composites and environmental barrier coating (EBC). A promising EBC material, ytterbium oxide (Yb2O3), was fabricated by hot pressing, and its properties were systemically investigated. The evaluation of thermal properties provides a baseline for the application of Yb2O3 on SiCf/SiC or Al2O3f/Al2O3 composites. The performance in water vapor and molten calcium–magnesium–aluminosilicate (CMAS) environments indicates its excellent durability in harsh environment. Compared with rare‐earth silicates, the thermochemical interactions between ytterbium oxide and CMAS changed greatly with the absence of silicon oxide. Reactions of ytterbium oxide with CMAS form several reaction products, including apatite, garnet, and silicocarnotite. The crystallization of garnet and silicocarnotite could effectively consume and solidify the CMAS melt, which prevents the melt infiltration and mitigates the further corrosion.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.18786