Revealing the nanogeometry of WS2 nanoflowers by polarization-resolved Raman spectroscopy
Recent studies of transition metal dichalcogenides (TMDs) have revealed exciting optical properties, such as stable excitons and chiral light–matter interactions. Chemical vapor deposition techniques provide a platform for the fabrication of nanostructures with diverse geometries, ranging from horiz...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2022-11, Vol.132 (17) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent studies of transition metal dichalcogenides (TMDs) have revealed exciting optical properties, such as stable excitons and chiral light–matter interactions. Chemical vapor deposition techniques provide a platform for the fabrication of nanostructures with diverse geometries, ranging from horizontal flakes to flower-like structures. Raman spectroscopy is commonly used to characterize TMDs and their properties. Here, we use polarization-resolved Raman spectroscopy to probe the nanogeometry and orientation of
WS
2 nanoflower petals. Exciting the nanoflowers with linearly polarized light, we observe an enhanced Raman response from flower petals oriented along the excitation polarization direction. Furthermore, the helicity-resolved Raman response of vertically oriented wall-like flower petals exhibits clear differences with horizontally oriented flakes. Although the photoluminescence from the nanoflowers is strongly reduced, the Raman response upon excitation in resonance with the
WS
2 excitonic transition does reveal the presence of the exciton, which results in a distinct temperature dependence of the Raman response. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0102381 |