IDEAL INDEPENDENT FAMILIES AND THE ULTRAFILTER NUMBER

We say that $\mathcal {I}$ is an ideal independent family if no element of ${\mathcal {I}}$ is a subset mod finite of a union of finitely many other elements of ${\mathcal {I}}.$ We will show that the minimum size of a maximal ideal independent family is consistently bigger than both $\mathfrak {d}$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2021-03, Vol.86 (1), p.128-136
Hauptverfasser: CANCINO, JONATHAN, GUZMÁN, OSVALDO, MILLER, ARNOLD W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We say that $\mathcal {I}$ is an ideal independent family if no element of ${\mathcal {I}}$ is a subset mod finite of a union of finitely many other elements of ${\mathcal {I}}.$ We will show that the minimum size of a maximal ideal independent family is consistently bigger than both $\mathfrak {d}$ and $\mathfrak {u},$ this answers a question of Donald Monk.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2019.14