IDEAL INDEPENDENT FAMILIES AND THE ULTRAFILTER NUMBER
We say that $\mathcal {I}$ is an ideal independent family if no element of ${\mathcal {I}}$ is a subset mod finite of a union of finitely many other elements of ${\mathcal {I}}.$ We will show that the minimum size of a maximal ideal independent family is consistently bigger than both $\mathfrak {d}$...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2021-03, Vol.86 (1), p.128-136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We say that
$\mathcal {I}$
is an ideal independent family if no element of
${\mathcal {I}}$
is a subset mod finite of a union of finitely many other elements of
${\mathcal {I}}.$
We will show that the minimum size of a maximal ideal independent family is consistently bigger than both
$\mathfrak {d}$
and
$\mathfrak {u},$
this answers a question of Donald Monk. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2019.14 |