MÖBIUS–FROBENIUS MAPS ON IRREDUCIBLE POLYNOMIALS
Let n be a positive integer and let $\mathbb{F} _{q^n}$ be the finite field with $q^n$ elements, where q is a prime power. We introduce a natural action of the projective semilinear group ${\mathrm{P}\Gamma\mathrm{L}} (2, q^n)={\mathrm{PGL}} (2, q^n)\rtimes {\mathrm{Gal}} ({\mathbb F_{q^n}} /\mathbb...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2021-08, Vol.104 (1), p.66-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let n be a positive integer and let
$\mathbb{F} _{q^n}$
be the finite field with
$q^n$
elements, where q is a prime power. We introduce a natural action of the projective semilinear group
${\mathrm{P}\Gamma\mathrm{L}} (2, q^n)={\mathrm{PGL}} (2, q^n)\rtimes {\mathrm{Gal}} ({\mathbb F_{q^n}} /\mathbb{F} _q)$
on the set of monic irreducible polynomials over the finite field
$\mathbb{F} _{q^n}$
. Our main results provide information on the characterisation and number of fixed points. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972720001306 |