TRIPLET INVARIANCE AND PARALLEL SUMS
Let R be a semiprime ring with extended centroid C and let $I(x)$ denote the set of all inner inverses of a regular element x in R. Given two regular elements $a, b$ in R, we characterise the existence of some $c\in R$ such that $I(a)+I(b)=I(c)$ . Precisely, if $a, b, a+b$ are regular elements of R...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2021-08, Vol.104 (1), p.118-126 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R be a semiprime ring with extended centroid C and let
$I(x)$
denote the set of all inner inverses of a regular element x in R. Given two regular elements
$a, b$
in R, we characterise the existence of some
$c\in R$
such that
$I(a)+I(b)=I(c)$
. Precisely, if
$a, b, a+b$
are regular elements of R and a and b are parallel summable with the parallel sum
${\cal P}(a, b)$
, then
$I(a)+I(b)=I({\cal P}(a, b))$
. Conversely, if
$I(a)+I(b)=I(c)$
for some
$c\in R$
, then
$\mathrm {E}[c]a(a+b)^{-}b$
is invariant for all
$(a+b)^{-}\in I(a+b)$
, where
$\mathrm {E}[c]$
is the smallest idempotent in C satisfying
$c=\mathrm {E}[c]c$
. This extends earlier work of Mitra and Odell for matrix rings over a field and Hartwig for prime regular rings with unity and some recent results proved by Alahmadi et al. [‘Invariance and parallel sums’, Bull. Math. Sci. 10(1) (2020), 2050001, 8 pages] concerning the parallel summability of unital prime rings and abelian regular rings. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972720001550 |