DIAMETER OF COMMUTING GRAPHS OF SYMPLECTIC ALGEBRAS
Let $F$ be an algebraically closed field of characteristic $0$ and let $\operatorname{sp}(2l,F)$ be the rank $l$ symplectic algebra of all $2l\times 2l$ matrices $x=\big(\!\begin{smallmatrix}A & B\\ C & -A^{t}\end{smallmatrix}\!\big)$ over $F$ , where $A^{t}$ is the transpose of $A$ and $B,C...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2019-12, Vol.100 (3), p.419-427 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 427 |
---|---|
container_issue | 3 |
container_start_page | 419 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 100 |
creator | GENG, XIANYA FAN, LITING MA, XIAOBIN |
description | Let
$F$
be an algebraically closed field of characteristic
$0$
and let
$\operatorname{sp}(2l,F)$
be the rank
$l$
symplectic algebra of all
$2l\times 2l$
matrices
$x=\big(\!\begin{smallmatrix}A & B\\ C & -A^{t}\end{smallmatrix}\!\big)$
over
$F$
, where
$A^{t}$
is the transpose of
$A$
and
$B,C$
are symmetric matrices of order
$l$
. The commuting graph
$\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$
of
$\operatorname{sp}(2l,F)$
is a graph whose vertex set consists of all nonzero elements in
$\operatorname{sp}(2l,F)$
and two distinct vertices
$x$
and
$y$
are adjacent if and only if
$xy=yx$
. We prove that the diameter of
$\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$
is
$4$
when
$l>2$
. |
doi_str_mv | 10.1017/S0004972719000583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2730636731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972719000583</cupid><sourcerecordid>2730636731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-8e386d39be2144282208604f5bc3132dac811b8b1eeae84a6df8e7d337ae05763</originalsourceid><addsrcrecordid>eNp1kM1Og0AUhSdGEyv6AO6auEbnzmV-WCJSSgK2KXThigwwmDbW1qFd-DY-i08mpE1cGFf359zv3OQQcgv0HijIh5xS6vmSSfD7jis8IyOQnLsgEM_JaJDdQb8kV1237ifOmRoR7ykJsqiIFuPZZBzOsmxZJM_xOF4E82k-7PKXbJ5GYZGE319BGkePiyC_JhetfuvMzak6ZDmJinDqprM4CYPUrZnw964yqESDfmUYeB5TjFElqNfyqkZA1uhaAVSqAmO0UZ4WTauMbBClNpRLgQ65O_ru7PbjYLp9ud4e7Hv_smQSqUAheyOHwPGqttuus6Ytd3a10fazBFoO4ZR_wukZPDF6U9lV82p-rf-nfgDdPGAh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730636731</pqid></control><display><type>article</type><title>DIAMETER OF COMMUTING GRAPHS OF SYMPLECTIC ALGEBRAS</title><source>Cambridge University Press Journals Complete</source><creator>GENG, XIANYA ; FAN, LITING ; MA, XIAOBIN</creator><creatorcontrib>GENG, XIANYA ; FAN, LITING ; MA, XIAOBIN</creatorcontrib><description>Let
$F$
be an algebraically closed field of characteristic
$0$
and let
$\operatorname{sp}(2l,F)$
be the rank
$l$
symplectic algebra of all
$2l\times 2l$
matrices
$x=\big(\!\begin{smallmatrix}A & B\\ C & -A^{t}\end{smallmatrix}\!\big)$
over
$F$
, where
$A^{t}$
is the transpose of
$A$
and
$B,C$
are symmetric matrices of order
$l$
. The commuting graph
$\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$
of
$\operatorname{sp}(2l,F)$
is a graph whose vertex set consists of all nonzero elements in
$\operatorname{sp}(2l,F)$
and two distinct vertices
$x$
and
$y$
are adjacent if and only if
$xy=yx$
. We prove that the diameter of
$\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$
is
$4$
when
$l>2$
.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972719000583</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algebra ; Apexes ; Commuting ; Graphs ; Mathematical analysis ; Matrices (mathematics) ; Vertex sets</subject><ispartof>Bulletin of the Australian Mathematical Society, 2019-12, Vol.100 (3), p.419-427</ispartof><rights>2019 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-8e386d39be2144282208604f5bc3132dac811b8b1eeae84a6df8e7d337ae05763</cites><orcidid>0000-0003-3370-3004 ; 0000-0002-7650-7436 ; 0000-0003-4261-8506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972719000583/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>GENG, XIANYA</creatorcontrib><creatorcontrib>FAN, LITING</creatorcontrib><creatorcontrib>MA, XIAOBIN</creatorcontrib><title>DIAMETER OF COMMUTING GRAPHS OF SYMPLECTIC ALGEBRAS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>Let
$F$
be an algebraically closed field of characteristic
$0$
and let
$\operatorname{sp}(2l,F)$
be the rank
$l$
symplectic algebra of all
$2l\times 2l$
matrices
$x=\big(\!\begin{smallmatrix}A & B\\ C & -A^{t}\end{smallmatrix}\!\big)$
over
$F$
, where
$A^{t}$
is the transpose of
$A$
and
$B,C$
are symmetric matrices of order
$l$
. The commuting graph
$\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$
of
$\operatorname{sp}(2l,F)$
is a graph whose vertex set consists of all nonzero elements in
$\operatorname{sp}(2l,F)$
and two distinct vertices
$x$
and
$y$
are adjacent if and only if
$xy=yx$
. We prove that the diameter of
$\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$
is
$4$
when
$l>2$
.</description><subject>Algebra</subject><subject>Apexes</subject><subject>Commuting</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Vertex sets</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1Og0AUhSdGEyv6AO6auEbnzmV-WCJSSgK2KXThigwwmDbW1qFd-DY-i08mpE1cGFf359zv3OQQcgv0HijIh5xS6vmSSfD7jis8IyOQnLsgEM_JaJDdQb8kV1237ifOmRoR7ykJsqiIFuPZZBzOsmxZJM_xOF4E82k-7PKXbJ5GYZGE319BGkePiyC_JhetfuvMzak6ZDmJinDqprM4CYPUrZnw964yqESDfmUYeB5TjFElqNfyqkZA1uhaAVSqAmO0UZ4WTauMbBClNpRLgQ65O_ru7PbjYLp9ud4e7Hv_smQSqUAheyOHwPGqttuus6Ytd3a10fazBFoO4ZR_wukZPDF6U9lV82p-rf-nfgDdPGAh</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>GENG, XIANYA</creator><creator>FAN, LITING</creator><creator>MA, XIAOBIN</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3370-3004</orcidid><orcidid>https://orcid.org/0000-0002-7650-7436</orcidid><orcidid>https://orcid.org/0000-0003-4261-8506</orcidid></search><sort><creationdate>201912</creationdate><title>DIAMETER OF COMMUTING GRAPHS OF SYMPLECTIC ALGEBRAS</title><author>GENG, XIANYA ; FAN, LITING ; MA, XIAOBIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-8e386d39be2144282208604f5bc3132dac811b8b1eeae84a6df8e7d337ae05763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Apexes</topic><topic>Commuting</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GENG, XIANYA</creatorcontrib><creatorcontrib>FAN, LITING</creatorcontrib><creatorcontrib>MA, XIAOBIN</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GENG, XIANYA</au><au>FAN, LITING</au><au>MA, XIAOBIN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIAMETER OF COMMUTING GRAPHS OF SYMPLECTIC ALGEBRAS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2019-12</date><risdate>2019</risdate><volume>100</volume><issue>3</issue><spage>419</spage><epage>427</epage><pages>419-427</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Let
$F$
be an algebraically closed field of characteristic
$0$
and let
$\operatorname{sp}(2l,F)$
be the rank
$l$
symplectic algebra of all
$2l\times 2l$
matrices
$x=\big(\!\begin{smallmatrix}A & B\\ C & -A^{t}\end{smallmatrix}\!\big)$
over
$F$
, where
$A^{t}$
is the transpose of
$A$
and
$B,C$
are symmetric matrices of order
$l$
. The commuting graph
$\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$
of
$\operatorname{sp}(2l,F)$
is a graph whose vertex set consists of all nonzero elements in
$\operatorname{sp}(2l,F)$
and two distinct vertices
$x$
and
$y$
are adjacent if and only if
$xy=yx$
. We prove that the diameter of
$\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$
is
$4$
when
$l>2$
.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972719000583</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3370-3004</orcidid><orcidid>https://orcid.org/0000-0002-7650-7436</orcidid><orcidid>https://orcid.org/0000-0003-4261-8506</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 2019-12, Vol.100 (3), p.419-427 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_proquest_journals_2730636731 |
source | Cambridge University Press Journals Complete |
subjects | Algebra Apexes Commuting Graphs Mathematical analysis Matrices (mathematics) Vertex sets |
title | DIAMETER OF COMMUTING GRAPHS OF SYMPLECTIC ALGEBRAS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIAMETER%20OF%20COMMUTING%20GRAPHS%20OF%20SYMPLECTIC%C2%A0ALGEBRAS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=GENG,%20XIANYA&rft.date=2019-12&rft.volume=100&rft.issue=3&rft.spage=419&rft.epage=427&rft.pages=419-427&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972719000583&rft_dat=%3Cproquest_cross%3E2730636731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730636731&rft_id=info:pmid/&rft_cupid=10_1017_S0004972719000583&rfr_iscdi=true |